scholarly journals Using the Goldilocks Principle to model coral ecosystem engineering

2021 ◽  
Vol 288 (1956) ◽  
pp. 20211260
Author(s):  
S. J. Hennige ◽  
A. I. Larsson ◽  
C. Orejas ◽  
A. Gori ◽  
L. H. De Clippele ◽  
...  

The occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stability of these systems will depend on the ratio of both. To model how the ratio of live : dead coral may change, the ‘Goldilocks Principle’ can be used, where organisms will only flourish if conditions are ‘just right’. With data from particle imaging velocimetry and numerical smooth particle hydrodynamic modelling with two simple rules, we demonstrate how this principle can be applied to a model reef system, and how corals are effectively optimizing their own local flow requirements through habitat engineering. Building on advances here, these approaches can be used in conjunction with numerical modelling to investigate the growth and mortality of biodiversity supporting framework in present-day and future coral reef structures.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastian Draack ◽  
Meinhard Schilling ◽  
Thilo Viereck

Abstract Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.


1978 ◽  
Vol 1 (16) ◽  
pp. 65
Author(s):  
David Prandle

Numerical modelling of rivers, estuaries and shallow seas has attracted increasing interest over the last two decades. The models have developed from one dimensional (ID) applications to tidal propagation and flood routing through two and, finally, three dimensional applications to motions ranging from "pseudo-turbulence" to annual mean residual flows. The present account describes the development, over the last five years, of the modelling studies carried out by the author concerning the hydrodynamics of the southern North Sea and River Thames. The objective is to identify those major points which have emerged that may have a wider significance.


2004 ◽  
Vol 126 (4) ◽  
pp. 692-699 ◽  
Author(s):  
Xiufang Gao ◽  
Bengt Sunde´n

The flow behavior in rib-roughened ducts is influenced by the inclination of ribs and the effect is investigated in the present study by Particle Image Velocimetry (PIV). The local flow structures between two adjacent ribs were measured. The Reynolds number was fixed at 5800. The flow field description was based on the PIV results in planes both parallel and perpendicular to the ribbed walls at various locations. The rib angle to the main flow direction was varied as 30 deg, 45 deg, 60 deg and 90 deg. The ribs induce three dimensional flow fields. The flow separation and reattachment between adjacent ribs are clearly observed. In addition, the inclined ribs are found to alter the spanwise distribution of the streamwise velocity component. The streamwise velocity component has its highest values at the upstream end of the ribs, and decreases continuously to its lowest values at the downstream end. Strong secondary flow motion occurs over the entire duct cross section for the inclined ribs. The flow structures between two consecutive ribs show that the fluid flows along the ribs from one end of the ribs to the other end, and then turns back at the transverse center. Downwash and upwash flows are observed at the upstream end and downstream end of the ribs, respectively.


2006 ◽  
Vol 31 (9) ◽  
pp. 1220 ◽  
Author(s):  
Catherine E. Towers ◽  
David P. Towers ◽  
Heather I. Campbell ◽  
Sijiong Zhang ◽  
Alan H. Greenaway

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Israa Alesbe ◽  
Moustafa Abdel-Maksoud ◽  
Sattar Aljabair

Analyses of the unsteady flow behaviour of a 5 MW horizontal-axis wind turbine (HAWT) rotor (Case I) and a rotor with tower (Case II) are carried out using a panel method and a RANSE method. The panel method calculations are obtained by applying the in-house boundary element method (BEM) panMARE code, which is based on the potential flow theory. The BEM is a three-dimensional first-order panel method which can be used for investigating various steady and unsteady flow problems. Viscous flow simulations are carried out by using the RANSE solver ANSYS CFX 14.5. The results of Case I allow for the calculation of the global integral values of the torque and the thrust and include detailed information on the local flow field, such as the pressure distribution on the blade sections and the streamlines. The calculated pressure distribution by the BEM is compared with the corresponding values obtained by the RANSE solver. The tower geometry is considered in the simulation in Case II, so the unsteady forces due to the interaction between the tower and the rotor blades can be calculated. The application of viscous and inviscid flow methods to predict the forces on the HAWT allows for the evaluation of the viscous effects on the calculated HAWT flows.


2020 ◽  
Vol 10 (18) ◽  
pp. 6205
Author(s):  
Maria Cerreta ◽  
Roberta Mele ◽  
Giuliano Poli

The complexity of the urban spatial configuration, which affects human wellbeing and landscape functioning, necessitates data acquisition and three-dimensional (3D) visualisation to support effective decision-making processes. One of the main challenges in sustainability research is to conceive spatial models adapting to changes in scale and recalibrate the related indicators, depending on scale and data availability. From this perspective, the inclusion of the third dimension in the Urban Ecosystem Services (UES) identification and assessment can enhance the detail in which urban structure–function relationships can be studied. Moreover, improving the modelling and visualisation of 3D UES indicators can aid decision-makers in localising, analysing, assessing, and managing urban development strategies. The main goal of the proposed framework is concerned with evaluating, planning, and monitoring UES within a 3D virtual environment, in order to improve the visualisation of spatial relationships among services and to support site-specific planning choices.


2019 ◽  
Vol 12 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Sonia Sanchez ◽  
Ignacio Cortiñas ◽  
Helena Villanova ◽  
Anna Rios ◽  
Iñaki Galve ◽  
...  

IntroductionEndovascular treatment of stroke, although highly effective, may fail to reach complete recanalization in around 20% of cases. The Advanced Thrombectomy System (ANCD) is a novel stroke thrombectomy device designed to reduce clot fragmentation and facilitate retrieval by inducing local flow arrest and allowing distal aspiration in combination with a stent retriever. We aimed to assess the preclinical efficacy of ANCD.MethodsSoft red blood cell (RBC)-rich (n=20/group) and sticky fibrin-rich (n=30/group) clots were used to create middle cerebral artery (MCA) occlusions in two vascular phantoms. Three different treatment strategies were tested: (1) balloon guide catheter + Solitaire (BGC+SR); (2) distal access catheter + SR (DAC+SR); and (3) ANCD+SR, until complete recanalization was achieved or to a maximum of three passes. The recanalization rate was determined after each pass.ResultsAfter one pass, ANCD+SR resulted in an increased recanalization rate (94%) for all clots together compared with BGC+SR (66%; p<0.01) or DAC+SR (80%; p=0.04). After the final pass the recanalization rate increased in all three groups but remained higher with ANCD+SR (100%) than with BGC+SR (74%; p<0.01) or DAC+SR (90%; p=0.02). The mean number of passes was lower with ANCD+SR (1.06) than with BGC+SR (1.46) or DAC+SR (1.25) (p=0.01). A logistic regression model adjusted for treatment arm, clot type, and model used showed that both RBC-rich clots (OR 8.1, 95% CI 1.6 to 13.5) and ANCD+SR (OR 3.9, 95% CI 1.01 to 15.8) were independent predictors of first-pass recanalization.ConclusionIn in vitro three-dimensional models replicating MCA-M1 occlusion, ANCD+SR showed significantly better recanalization rates in fewer passes than other commonly used combinations of devices.


Sign in / Sign up

Export Citation Format

Share Document