scholarly journals Do mutualistic interactions last longer than antagonistic interactions?

2021 ◽  
Vol 288 (1958) ◽  
pp. 20211457
Author(s):  
Yichao Zeng ◽  
John J. Wiens

Species interactions are crucial and ubiquitous across organisms. However, it remains unclear how long these interactions last over macroevolutionary timescales, and whether the nature of these interactions (mutualistic versus antagonistic) helps predict how long they persist. Here, we estimated the ages of diverse species interactions, based on phylogenies from 60 studies spanning the Tree of Life. We then tested if mutualistic interactions persist longer than antagonistic interactions. We found that the oldest mutualisms were significantly older than the oldest antagonisms across all organisms, and within plants, fungi, bacteria and protists. Surprisingly, this pattern was reversed in animals, with the oldest mutualisms significantly younger than the oldest antagonisms. We also found that many mutualisms were maintained for hundreds of millions of years (some greater than 1 billion years), providing strong evidence for the long-term stability of mutualisms and for niche conservatism in species interactions.

2018 ◽  
Vol 285 (1874) ◽  
pp. 20172596 ◽  
Author(s):  
Cecilia Siliansky de Andreazzi ◽  
Paulo R. Guimarães ◽  
Carlos J. Melián

Studies have shown the potential for rapid adaptation in coevolving populations and that the structure of species interaction networks can modulate the vulnerability of ecological systems to perturbations. Although the feedback loop between population dynamics and coevolution of traits is crucial for understanding long-term stability in ecological assemblages, modelling eco-evolutionary dynamics in species-rich assemblages is still a challenge. We explore how eco-evolutionary feedbacks influence trait evolution and species abundances in 23 empirical antagonistic networks. We show that, if selection due to antagonistic interactions is stronger than other selective pressures, eco-evolutionary feedbacks lead to higher mean species abundances and lower temporal variation in abundances. By contrast, strong selection of antagonistic interactions leads to higher temporal variation of traits and on interaction strengths. Our results present a theoretical link between the study of the species persistence and coevolution in networks of interacting species, pointing out the ways by which coevolution may decrease the vulnerability of species within antagonistic networks to demographic fluctuation.


Sign in / Sign up

Export Citation Format

Share Document