scholarly journals Memoir on the integration of partial differential equations of the second order in three independent variables, when an intermediary integral does not exist in general

1898 ◽  
Vol 62 (379-387) ◽  
pp. 283-285

The general feature of most of the methods of integration of any partial differential equation is the construction of an appropriate subsidiary system and the establishment of the proper relations between integrals of this system and the solution of the original equation. Methods, which in this sense may be called complete, are possessed for partial differential equations of the first order in one dependent variable and any number of independent variables; for certain classes of equations of the first order in two independent variables and a number of dependent variables; and for equations of the second (and higher) orders in one dependent and two independent variables.

Author(s):  
Amit Kumar, Et. al.

In this paper we will discuss Euler’s theorem for homogenous functions to solve different order partial differential equations. We will see that how we can predict the solution of partial differential Equation using different approaches of this theorem. In fact we also consider the case when more than two independent variables will be involved in the partial differential equation whenever dependent functions will be homogenous functions. We will throw a light on one method called Ajayous rules to predict the solution of homogenous partial differential equation.


The general feature of most methods for the integration of partial differential equations in two independent variables is, in some form or other, the construction of a set of subsidiary equations in only a single independent variable; and this applies to all orders. In particular, for the first order in any number of variables (not merely in two), the subsidiary system is a set of ordinary equations in a single independent variable, containing as many equations as dependent variables to be determined by that subsidiary system. For equations of the second order which possess an intermediary integral, the best methods (that is, the most effective as giving tests of existence) are those of Boole, modified and developed by Imschenetsky, and that of Goursat, initially based upon the theory of characteristics, but subsequently brought into the form of Jacobian systems of simultaneous partial equations of the first order. These methods are exceptions to the foregoing general statement. But for equations of the second order or of higher orders, which involve two independent variables and in no case possess an intermediary integral, the most general methods are that of Ampere and that of Darboux, with such modifications and reconstruction as have been introduced by other writers; and though in these developments partial differential equations of the first order are introduced, still initially the subsidiary system is in effect a system with one independent variable expressed and the other, suppressed during the integration, playing a parametric part. In oilier words, the subsidiary system practically has one independent variable fewer than the original equation. In another paper I have given a method for dealing with partial differential equations of the second order in three variables when they possess an intermediary integral; and references will there be found to other writers upon the subject. My aim in the present paper has been to obtain a method for partial differential equations of the second order in three variables when, in general, they possess no intermediary integral. The natural generalisation of the idea in Darboux’s method has been adopted, viz., the construction of subsidiary equations in which the number of expressed independent variables is less by unity than the number in the original equation; consequently the number is two. The subsidiary equations thus are a set of simultaneous partial differential equations in two independent variables and a number of dependent variables.


1863 ◽  
Vol 12 ◽  
pp. 420-424

Jacobi in a posthumous memoir, which has only this year appeared, has developed two remarkable methods (agreeing in their general character, but differing in details) of solving non-linear partial differential equations of the first order, and has applied them in connexion with that theory of the differential equations of dynamics which was established by Sir W. R. Hamilton in the 'Philosophical Transactions’ for 1834-35. The knowledge, indeed, that the solution of the equation of a dynamical problem is involved in the discovery of a single central function, defined by a single partial differential equation of the first order, does not appear to have been hitherto (perhaps it will never be) very fruitful in practical results.


2002 ◽  
Vol 44 (1) ◽  
pp. 83-93
Author(s):  
Peter J. Vassiliou

AbstractWe give an intrinsic construction of a coupled nonlinear system consisting of two first-order partial differential equations in two dependent and two independent variables which is determined by a hyperbolic structure on the complex special linear group regarded as a real Lie groupG. Despite the fact that the system is not Darboux semi-integrable at first order, the construction of a family of solutions depending.upon two arbitrary functions, each of one variable, is reduced to a system of ordinary differential equations on the 1-jets. The ordinary differential equations in question are of Lie type and associated withG.


1985 ◽  
Vol 5 (3) ◽  
pp. 437-443 ◽  
Author(s):  
R. Rudnicki

AbstractWe prove that the dynamical systems generated by first order partial differential equations are K-flows and chaotic in the sense of Auslander & Yorke.


1913 ◽  
Vol 32 ◽  
pp. 150-163
Author(s):  
H. Levy

The complete integral of the differential equationφ(xyzpq) = 0is a relation among the variables, which includes as many arbitrary constants as there are independent variables. But it is important to distinguish carefully between differential equations which have been formed by the elimination of constants from some complete primitive, and those whose origin is quite unknown, or which may have been constructed by some method totally different from the first.In the original case, the differential equation can always be integrated in finite terms, while in the latter, only under the conditions laid down in Cauchy's Existence Theorem can an integral be obtained, and even then usually as an infinite series.


In this paper, without touching on the question of the existence of integrals of systems of simultaneous partial differential equations, I have given a method by which the problem of finding their complete primitives may he attacked. The cases discussed are two: that of a pair of equations of the first order in two dependent and two independent variables, and that of a single equation of the second order, with one dependent and two independent variables.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1060
Author(s):  
Daniela Marian ◽  
Sorina Anamaria Ciplea ◽  
Nicolaie Lungu

The aim of this paper is to investigate generalized Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a system of partial differential equations of first order. More precisely, we consider a system of two nonlinear equations of first order with an unknown function of two independent variables, which satisfy the corresponding compatibility condition. The study method is that of differential inequalities of the Gronwall type.


Sign in / Sign up

Export Citation Format

Share Document