A palaeomagnetic survey of South American rock formations - Palaeomagnetic studies on palaeozoic rocks from Bolivia

The palaeomagnetism of Ordovician and Devonian and Carboniferous sedimentary rock formations exposed in Bolivia has been studied. It is deduced that the south palaeomagnetic pole was situated in the Guianas in the Middle Palaeozoic, and in the south Atlantic, about half way between the present positions of Buenos Aires and Cape Town in the Carboniferous.

Cambrian, Cambro-Ordovician and Ordovician formations of red sandstones and siltstones from the sub-Andean regionso f the Provinces of Salta and Jujuy have been studied. The grouping of n.r.m . directions suggests partial remagnetization after folding in the Tertiary or Quaternary geomagnetic field. Thermal cleaning at 300 °C and higher temperatures destroys this secondary magnetization leaving a magnetization which is accepted as representing the lower Palaeozoic geomagnetic field. Palaeomagnetic south pole positions have been computed and lie in the Atlantic Ocean to the NNE of Brazil. The period between the Carboniferous and Triassic is covered by the Paganzo formation which is exposed in La Rioja Province. The older part (Paganzo II) is reversely magnetized with a south p.m . pole in the South Atlantic, while the upper part (Paganzo III) is normally magnetized with a south palaeomagnetic pole in the vicinity of poles obtained for Triassic rock formations from elsewhere in S. America. Formations of red beds from Salta province regarded as Upper Palaeozoic or Mesozoic yield a south palaeomagnetic pole in the South Atlantic corresponding to a Triassic age. Ore microscope and thermal decay curves suggest that the remanent magnetism is due to haematite.


2021 ◽  
Author(s):  
Susana Barbosa ◽  
Mauricio Camilo ◽  
Carlos Almeida ◽  
Guilherme Amaral ◽  
Nuno Dias ◽  
...  

<p>The marine boundary layer offers a unique opportunity to investigate the electrical properties of the atmosphere, as the effect of natural radioactivity in driving near surface ionization is significantly reduced over the ocean, and the concentration of aerosols is also typically lower than over land. This work addresses the temporal variability of the atmospheric electric field in the South Atlantic marine boundary layer based on measurements from the SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer) project. The SAIL monitoring campaign took place on board the Portuguese navy tall ship NRP Sagres during its circumnavigation expedition in 2020.  Two identical field mills (CS110, Campbell Scientific) were installed on the same mast but at different heights (about 5 and 22 meters), recording the atmospheric electric field every 1-second. Hourly averages of the atmospheric electric field are analyzed for the ship’s leg from 3<sup>rd</sup> to 25<sup>th</sup> March, between Buenos Aires (South America) and Cape Town (South Africa). The median daily curve of the electric field has a shape compatible with the Carnegie curve, but significant variability is found in the daily pattern of individual days, with only about 30% of the days exhibiting a diurnal pattern consistent with the Carnegie curve.</p>


2021 ◽  
Author(s):  
Peter Haas ◽  
R. Dietmar Müller ◽  
Jörg Ebbing ◽  
Gregory A. Houseman ◽  
Nils-Peter Finger ◽  
...  

<p>In this contribution, we examine the evolution of the South Atlantic passive margins, based on a new thermal lithosphere-asthenosphere-boundary (LAB) model. Our model is calculated by 1D advection and diffusion with rifting time, crustal thickness and stretching factors as input parameters. The initial lithospheric thickness is defined by isostatic equilibrium with laterally variable crustal and mantle density. We simulate the different rifting stages that caused the opening of the South Atlantic Ocean and pick the LAB as the T=1330° C isotherm. The modelled LAB shows a heterogeneous structure with deeper values at equatorial latitudes, as well as a more variable lithosphere along the southern part. This division reflects different stages of the South Atlantic opening: Initial opening of the southern South Atlantic caused substantial lithospheric thinning, followed by the rather oblique-oriented opening of the equatorial South Atlantic accompanied by severe thinning. Compared to global models, our LAB reflects a higher variability associated with tectonic features on a smaller scale. As an example, we identify anomalously high lithospheric thickness in the South American Santos Basin that is only poorly observed in global LAB models. Comparing the LAB of the conjugate South American and African passive margins in a Gondwana framework reveals a variable lithospheric architecture for the southern parts. Strong differences up to 80 km for selected margin segments correlate with strong gradients in margin width for conjugate pairs. This mutual asymmetry suggests highly asymmetric melting and lithospheric thinning prior to rifting.</p>


Author(s):  
Gregory Knapp

South America was first “encountered” by Europeans during Columbus’ third voyage in 1498. This marked the end of the pre-Columbian period of the continent, and the beginning of the colonial period that lasted until the end of the wars of independence in the early nineteenth century. Total liberation of the continent from Spain was finally achieved at the Battle of Ayacucho in 1824. Brazilian independence from Portugal was achieved more peacefully in 1822, when Dom Pedro became constitutional emperor. The Guianas remained colonies far longer; indeed Guyane (French Guiana) is still an overseas department of France, while Suriname (Dutch Guiana) became independent in 1975, and Guyana (originally a Dutch colony, later British) became independent in 1966. It could be suggested that dependency remained after the end of formal colonial rule, owing to the continued influence of global economic powers on the continent. However, for the purposes of this chapter, the colonial period can be considered as lasting for 326 years from 1498 to 1824. If recent research has tended to enhance our appreciation of the impact of pre-Columbian peoples on the South American environment, it has also corrected some stereotypes concerning European colonial impacts. Europeans were not the first to substantially impact the South American environment. The colonial period was generally marked by depopulation and agricultural disintensification, with the result that many environments were more “pristine” at the end of the eighteenth century than at the end of the fifteenth century. Migrations, cultural hybridities, and new local, regional, and global economic linkages led to changes in demands on agriculture and resource extraction. New technologies, crops, and social structures also had an impact. These impacts were not always as negative as sometimes portrayed, and local populations often had a substantial say in the outcome. Many of the most noticeable impacts resulting from the encounter with Europeans did not become widespread until after independence (McAlister, 1984; Bethell, 1987; Hoberman, 1996; Hoberman et al., 1996; Mörner, 1985; Newson, 1995; Robinson, 1990; Butzer and Butzer, 1995).


2008 ◽  
Vol 26 (11) ◽  
pp. 3457-3476 ◽  
Author(s):  
A. S. Taschetto ◽  
I. Wainer

Abstract. The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño – Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.


Polar Record ◽  
1953 ◽  
Vol 6 (45) ◽  
pp. 608-616 ◽  
Author(s):  
G. De Q. Robin

After loading stores at Göteborg and Oslo, the expedition sailed from London on 23 November 1949 in the chartered Norwegian sealing vessel Norsel, G. Jakobsen, master. After calling at Cape Town, where P. G. Law of the Australian Department of External Affairs and J. A. King of the Union Weather Bureau of South Africa joined the vessel as observers, the Norsel headed south on 27 December to meet the Norwegian whaling factory Thorshovdi, which was carrying an advanced party of five men, with sixty dogs and some heavy equipment. An unexpectedly wide detour had to be made across the South Atlantic as the Thorshevdi was at that time in the Scotia Sea.


Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 299
Author(s):  
Fernanda Marcello ◽  
Ilana Wainer ◽  
Peter R. Gent ◽  
Bette L. Otto-Bliesner ◽  
Esther C. Brady

Interocean waters that are carried northward through South Atlantic surface boundary currents get meridionally split between two large-scale systems when meeting the South American coast at the western subtropical portion of the basin. This distribution of the zonal flow along the coast is investigated during the Last Millennium, when natural forcing was key to establish climate variability. Of particular interest are the changes between the contrasting periods of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The investigation is conducted with the simulation results from the Community Earth System Model Last Millennium Ensemble (CESM-LME). It is found that the subtropical South Atlantic circulation pattern differs substantially between these natural climatic extremes, especially at the northern boundary of the subtropical gyre, where the westward-flowing southern branch of the South Equatorial Current (sSEC) bifurcates off the South American coast, originating the equatorward-flowing North Brazil Undercurrent (NBUC) and the poleward Brazil Current (BC). It is shown that during the MCA, a weaker anti-cyclonic subtropical gyre circulation took place (inferred from decreased southern sSEC and BC transports), while the equatorward transport of the Meridional Overturning Circulation return flow was increased (intensified northern sSEC and NBUC). The opposite scenario occurs during the LIA: a more vigorous subtropical gyre circulation with decreased northward transport.


Sign in / Sign up

Export Citation Format

Share Document