Small deformations of a nonlinear viscoelastic tube: theory and application to polypropylene

The response of an isotropic, nonlinear viscoelastic, thin-walled tube to combinations of axial force F , axial couple G and pressure difference p is considered theoretically and experimentally. Theory is based on the membrane theory of thin shells, applied to a thin-walled circular cylindrical tube. The components of two dimensional stress and strain in the wall of the tube are derived, allowing for arbitrarily large deformations; but restriction to small deformations is shown to be necessary if the history of stress is to be controlled at will through F , G and p . For arbitrary choice of F , G and p as functions of time the strain is shown to depend on three stress tensors P , Q , R independent of time, and three scalar functions of time. An expression for the linear strain tensor in terms of P , Q , R is obtained which involves four scalar functions ϕ 0 , ϕ 1 , ϕ 2 , ϕ 3 . These functions depend on the invariants of P , Q , R and on the three scalar functions of time. If any one of P , G , p is always zero then R = 0 and only ϕ 0 , ϕ 1 , ϕ 2 are required. In the case of proportional loading ( Q = R = 0 ) only ϕ 0 and ϕ 1 are required and any one of the three strain components can be calculated from the remaining two. Creep and recovery experiments under simultaneous axial force and couple were conducted on a thin-walled tube of polypropylene at 65.5 °C. Theory was used to calculate the circumferential tensile strain from the measured shear strain and longitudinal tensile strain. For this particular tube ϕ 0 and ϕ 1 were found to be related in a special manner, implying that nonlinearity can be adcquatcly described by allowing the shear creep compliance to change with stress history. By varying separately combinations of the invariants of P , ϕ 1 was found to depend on both hydrostatic and deviatoric components ofthe applied stress.

1973 ◽  
Vol 95 (4) ◽  
pp. 219-223 ◽  
Author(s):  
D. M. Woo

A numerical solution for analysis of the bulging process of a thin-walled tube under internal pressure and axial force is proposed. The solution is applied to a case in which the longitudinal stress resulted from internal pressure and external compressive load is tensile along the whole length of the bulged tube. To verify whether the solution is applicable, theoretical and experimental results on the bulging of copper tubes have been obtained and are compared in this paper.


Alloy Digest ◽  
1994 ◽  
Vol 43 (8) ◽  

Abstract NICROBRAZ 50 is a low-melting, free-flowing filter metal for honeycomb structures and thin-walled tube assemblies. It has low solubility. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-460. Producer or source: Wall Colmonoy Corporation.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


2021 ◽  
Vol 11 (5) ◽  
pp. 2142
Author(s):  
Trung-Kien Le ◽  
Tuan-Anh Bui

Motorbike shock absorbers made with a closed die employ a tube-forming process that is more sensitive than that of a solid billet, because the tube is usually too thin-walled to conserve material. During tube forming, defects such as folding and cracking occur due to unstable tube forming and abnormal material flow. It is therefore essential to understand the relationship between the appearance of defects and the number of forming steps to optimize technological parameters. Based on both finite element method (FEM) simulations and microstructural observations, we demonstrate the important role of the number and methodology of the forming steps on the material flow, defects, and metal fiber anisotropy of motorbike shock absorbers formed from a thin-walled tube. We find limits of the thickness and height ratios of the tube that must be held in order to avoid defects. Our study provides an important guide to workpiece and processing design that can improve the forming quality of products using tube forming.


Author(s):  
Weiye Zhang ◽  
Yanchen Li ◽  
Beibei Wang ◽  
Jingmeng Sun ◽  
Lin Lin ◽  
...  

A cellulose carbonaceous aerogel/MnO2 ultrathick electrode with a unique low curvature, porous carbon thin-walled tube array structure was obtained from natural wood using a simple top-down approach.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

Sign in / Sign up

Export Citation Format

Share Document