Research at the Building Research Establishment into the applications of solar collectors for space and water heating in buildings

A completed study of a solar hot water heating system installed in a school showed an annual average efficiency of 15%, the low efficiency largely caused by the unfavourable pattern of use in schools. Field studies, in 80 existing and 12 new houses, of a simple domestic hot water system have been initiated to ascertain the influence of the occupants on the actual performance of solar collector systems. The development of testing methods of solar collectors and solar water heating systems is being undertaken in close collaboration with the B.S.I. and the E.E.C. Solar space heating is being investigated in two experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings in the U.K. show that they are far less cost-effective than other means of conserving energy in buildings.

2013 ◽  
Vol 315 ◽  
pp. 783-787
Author(s):  
M.Yaakob Yuhazri ◽  
A.M. Kamarul ◽  
A.H. Rahimah ◽  
Sihombing Haeryip ◽  
S.H. Yahaya

This research is related to thermal efficient water heating system, specifically to improve the water heating system that exists nowadays. The goal of this research is to improve the current water heating system by using solar heat as the energy source to heat the water. The focus is to improve the thermal efficiency by adding different thermal boxes as the absorber bed. By implementing the black body and radiation concept, the air trapped in the box is heated. The trapped air then increases the collisions between the molecules and directly increases the temperature inside the box, higher than the outside environment. Based on a daytime experimental result revealed steel thermal box is better to be used for tropical weather like Malaysia.


Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


2016 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
J. D. Naranjo ◽  
C. A. Ancines ◽  
C. F. Dos Santos ◽  
A. Krenzinger

The importance of renewable energy conversion in heat generation systems is increasing. Being a form of clean energy production, solar water heating systems can substitute part of the electricity consumption in Brazilian energy matrix. Beyond the environmental benefits, the use of such systems brings economic benefits to the country and especially those who use them, saving the use of other energy sources for water heating. In Brazil, the solar water heating is carried out mainly by flat solar collectors, a widely known technology produced in the country at low prices. Nowadays another technology is being used: the evacuated solar collectors. These collectors are being worldwide produced on a large scale and they are imported and inserted at competitive prices in the domestic market. Therefore, it is necessary to understand these systems and their operation to avoid errors in their installation and optimize their use. This work accomplishes a comparative analysis of a solar water heating system composed by a water- in-glass evacuated tube solar collector working in forced circulation, varying the flow, with the same system working in thermosyphon circulation. This comparison was performed by determining the annual energy the system can produce for each type of circulation, which was calculated based on the ISO 9459-2 standard and the climatic data of Porto Alegre city, Rio Grande Do Sul State. To perform these measures, a testing bench was mounted with sensors and measuring instruments which were calibrated before use. The results show that the system with thermosyphon circulation produces more annual energy than the forced circulation system where the water temperature stratification in the thermal reservoir was lower.


2013 ◽  
Vol 315 ◽  
pp. 788-792
Author(s):  
M.Yaakob Yuhazri ◽  
A.M. Kamarul ◽  
Sihombing Haeryip ◽  
S.H. Yahaya ◽  
Raja Izamshah

This research is related to thermal efficient water heating system, specifically to improve the water heating system that exists nowadays. The goal of this research is to improve the current water heating system by using solar heat as the energy source to heat the water. The focus is to improve the thermal efficiency by adding different thermal boxes as the absorber bed. By implementing the black body and radiation concept, the air trapped in the box is heated. The trapped air then increases the collisions between the molecules and directly increases the temperature inside the box, higher than the outside environment. Based on night experimental results revealed steel thermal box is better to be used for tropical weather like Malaysia.


2011 ◽  
Vol 224 ◽  
pp. 42-49
Author(s):  
Xiao Hui Du ◽  
Hai Shan Xia ◽  
Zhong Yi

During the integrated design of solar hot water system into high-rise residences, economy of solar hot water system directly effects its popularization and application. Combining with the concentrated solar water heating system on one high-rise residences, This paper tidies up the testing data on the June to October, and calculates solar insuring rate, auxiliary heat source heating rate and hot water cost at the different weather conditions, analyzes on the causes and provides some improvement advice, which will put forward the reference for architects to make the integrated design on the solar water heating system on high-rise residences.


1997 ◽  
Vol 119 (2) ◽  
pp. 126-133 ◽  
Author(s):  
A. H. Fanney ◽  
B. P. Dougherty

A novel solar water heating system was patented in 1994. This system uses photovoltaic cells to generate electrical energy that is subsequently dissipated in multiple electric resistive heating elements. A microprocessor controller continually selects the appropriate heating elements such that the resistive load causes the photovoltaic array to operate at or near maximum power. Unlike other residential photovoltaic systems, the photovoltaic solar water heating system does not require an inverter to convert the direct current supplied by the photovoltaic array to an alternating current or a battery system for storage. It uses the direct current supplied by the photovoltaic array and the inherent storage capabilities of a residential water heater. A photovoltaic solar hot water system eliminates the components most often associated with the failures of solar thermal hot water systems. Although currently more expensive than a solar thermal hot water system, the continued decline of photovoltaic cell prices is likely to make this system competitive with solar thermal hot water systems within the next decade. This paper describes the system, discusses the advantages and disadvantages relative to solar thermal water heating systems, reviews the various control strategies which have been considered, and presents experimental results for two full-scale prototype systems.


2018 ◽  
Vol 31 ◽  
pp. 02012 ◽  
Author(s):  
Syaifurrahman ◽  
A Gani Usman ◽  
Rakasiwi Rinjani

Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.


2012 ◽  
Vol 5 (4) ◽  
pp. 507-512 ◽  
Author(s):  
Giedrius Šiupšinskas ◽  
Solveiga Adomėnaitė

The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project) Contract No. TREN/FP7EN/239497/”ECOLIFE”). Santrauka Straipsnyje analizuojamos saulės kolektorių, skirtų karšto vandentiekio sistemai ant modernizuojamų daugiabučių namų stogų įrengti esamomis klimatinėmis sąlygomis galimybės. Nagrinėjamos įvairaus dydžio plokščiųjų ir vakuuminių saulės kolektorių su akumuliacinėmis talpyklomis sistemų kombinacijos. Kaip papildomas šilumos šaltinis karštam vandeniui pašildyti naudojama iš centralizuotų šilumos tinklų tiekiama šiluma. Lyginami plokščiųjų, vakuuminių saulės kolektorių ir akumuliacinio bako dydžio kombinacijų energinių ir ekonominių skaičiavimų rezultatai. Įvertinama kai kurių esminių rodiklių pokyčių įtaka galutiniams ekonominiams rodikliams.


2015 ◽  
Vol 16 (2) ◽  
pp. 79-90 ◽  
Author(s):  
M. Norhafana ◽  
Ahmad Faris Ismail ◽  
Z. A. A. Majid

Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 


2012 ◽  
Vol 512-515 ◽  
pp. 130-136
Author(s):  
Keh Chin Chang ◽  
Wei Min Lin ◽  
Yi Mei Liu ◽  
Tsong Sheng Lee ◽  
Kung Ming Chung

The total area of solar collectors installed in Taiwan had exceeded 2 million square meters by the end of 2010. However, there were only 98 systems in operation with area of solar collectors installed exceeding 100 square meters from 2001 to 2010. To increase industrial awareness of solar water heating technologies, a nursery greenhouse was chosen as the case study to evaluate its thermal performance throughout the months of May 2010 to April 2011. The results showed that the solar energy collected and heat loss during the night hours would affect the thermal efficiency, economic viability and attractiveness of a SWH. This study would provide useful information for all parties related to this market, manufacturers, potential users and policy-makers.


Sign in / Sign up

Export Citation Format

Share Document