Activated solar filaments and flares

Activations and disruptions of dark Ha filaments are very common phenomena on the Sun. They precede the most powerful two-ribbon solar flares, but they also appear far from any active region without any chromospheric flaring. Therefore, until very recently, filament disruptions were considered as interesting, but physically insignificant, flare precursors. Only Skylab observations have shown that the filament disruptions actually represent one of the basic and most important mechanisms of solar activity. These observations have revealed (1) that many coronal transients originate in eruptive filaments without chromospheric flares, (2) that Bruzek’s slow-mode waves originate in disrupted filaments and not in flares themselves, and (3) that many coronal X-ray enhancements outside active regions are also tops of newly formed loops, similar to the post-flare loops observed after filament disruptions in active regions. An interpretation of these data stems from Kopp & Pneuman’s theory of postflare loops: the process that disrupts a filament opens the magnetic field and causes a greatly enhanced mass-flow along the field lines. The open field lines subsequently reconnect, starting from the bottom of the corona and proceeding upwards. This process can last for many hours. Hot loops are first seen in X-rays, later in extreme ultraviolet (e.u.v.) lines, and, after an appropriate cooling time, in Hx as the loop prominence systems. The visibility of loops depends on plasma density. Several observed properties of solar flares indicate that the primary acceleration occurs as the field lines reconnect. Thus the process of particle acceleration in two ribbon flares can last for hours. Because reconnection is accomplished after essentially all filament disruptions, ‘disparitions brusques’ outside active regions should also accelerate particles.

1972 ◽  
Vol 14 ◽  
pp. 761-762
Author(s):  
G. Elwert ◽  
E. Haug

The polarization and angular distribution of solar hard X radiation above 10 keV was calculated under the assumption that the X rays originate as bremsstrahlung from energetic electrons moving in a preferred direction. The source electrons are supposed to have a power-law spectrum. These conditions are to be expected in the impulsive phase of an X-ray burst. The spiral orbits of the electrons around the magnetic field lines are taken into account.


1980 ◽  
Vol 91 ◽  
pp. 217-221 ◽  
Author(s):  
Z. Švestka ◽  
S. F. Martin ◽  
R. A. Kopp

In a series of papers on the flare of 29 July 1973 (Nolte et al., 1979; Martin, 1979; Švestka et al., 1979) it has been shown that Hα “post-flare” loops are the cooled aftermath of previously hot coronal loops which were visible in x-rays in the same position earlier in the flare. Kopp and Pneuman (1976) have proposed that these post-flare loops are formed by a process of successive magnetic field reconnections of previously distended magnetic field lines as illustrated in Figure 1. Each successive reconnection of the magnetic field yields a closed magnetic loop that forms above and concentric with previously formed loops. A shock wave created during each sudden reconnection travels down both legs of each loop and provides energy for ionizing chromospheric mass at the footpoints of the loop. Subsequent condensation of the ionized mass at the tops of the loops renders them visible as this mass falls to the chromosphere.


2021 ◽  
Vol 21 (11) ◽  
pp. 274
Author(s):  
Cheng-Ming Tan ◽  
Karl Ludwig Klein ◽  
Yi-Hua Yan ◽  
Satoshi Masuda ◽  
Bao-Lin Tan ◽  
...  

Abstract The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, coronal mass ejections, eruptive filaments, and various scales of jets. The different kinds of flares may have different characteristics of energy and spectral distribution. In this work, we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves, and X-ray observations of GOES, RHESSI, and Fermi/GBM. We found that: all the confined flare events were associated with a microwave continuum burst extending to frequencies of 9.4 ∼ 15.4 GHz, and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz. The median value is around 9 GHz. The microwave burst energy (or fluence) and the peak frequency are found to provide useful criteria to estimate the power of solar flares. The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al. (2004). All 10 events studied did not produce detectable hard X-rays with energies above ∼300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.


Author(s):  
Alexey Kirichenko ◽  
Sergey Kuzin ◽  
Sergey Shestov ◽  
Artem Ulyanov ◽  
Andrey Pertsov ◽  
...  

We present a description of the recent advances in the development of the KORTES assembly—the first solar oriented mission designed for the Russian segment of the International Space Station. KORTES consists of several imaging and spectroscopic instruments collectively covering a wide spectral range extending from extreme ultraviolet (EUV) wavelengths to X-rays. The EUV telescopes inside KORTES will trace the origin and dynamics of various solar phenomena, e.g., flares, CMEs, eruptions etc. EUV spectra provided by grazing-incidence spectroheliographs will enable precise DEM-diagnostics during these events. The monochromatic X-ray imager will observe the formation of hot plasma in active regions and outside them. The SolpeX module inside KORTES will offer an opportunity to measure fluxes, Doppler shifts and polarization of soft X-ray emission both in lines and continuum. SolpeX observations will contribute to studies of particle beams and chromospheric evaporation. The instrumentation of KORTES will employ a variety of novel multilayer and crystal optics. The deployment of KORTES is planned for 2024.


2008 ◽  
Vol 4 (S257) ◽  
pp. 283-286 ◽  
Author(s):  
N. Gopalswamy ◽  
S. Akiyama ◽  
S. Yashiro

AbstractWe examine the source properties of X-class soft X-ray flares that were not associated with coronal mass ejections (CMEs). All the flares were associated with intense microwave bursts implying the production of high energy electrons. However, most (85%) of the flares were not associated with metric type III bursts, even though open field lines existed in all but two of the active regions. The X-class flares seem to be truly confined because there was no material ejection (thermal or nonthermal) away from the flaring region into space.


2020 ◽  
Vol 500 (3) ◽  
pp. 3142-3150
Author(s):  
F Yusef-Zadeh ◽  
M Wardle ◽  
C Heinke ◽  
I Heywood ◽  
R Arendt ◽  
...  

ABSTRACT The detection of an X-ray filament associated with the radio filament G0.173–0.42 adds to four other non-thermal radio filaments with X-ray counterparts, amongst the more than 100 elongated radio structures that have been identified as synchrotron-emitting radio filaments in the inner couple of degrees of the Galactic centre. The synchrotron mechanism has also been proposed to explain the emission from X-ray filaments. However, the origin of radio filaments and the acceleration sites of energetic particles to produce synchrotron emission in radio and X-rays remain mysterious. Using MeerKAT, VLA, Chandra, WISE, and Spitzer, we present structural details of G0.173–0.42 which consists of multiple radio filaments, one of which has an X-ray counterpart. A faint oblique radio filament crosses the radio and X-ray filaments. Based on the morphology, brightening of radio and X-ray intensities, and radio spectral index variation, we argue that a physical interaction is taking place between two magnetized filaments. We consider that the reconnection of the magnetic field lines at the interaction site leads to the acceleration of particles to GeV energies. We also argue against the synchrotron mechanism for the X-ray emission due to the short ∼30 yr lifetime of TeV relativistic particles. Instead, we propose that the inverse Compton scattering mechanism is more likely to explain the X-ray emission by upscattering of seed photons emitted from a 106  L⊙ star located at the northern tip of the X-ray filament.


1974 ◽  
Vol 57 ◽  
pp. 157-159
Author(s):  
J. Vorpahl

Multiple hard X-radiation, along with associated emission at optical and radio wavelengths, is discussed for three events in particular: December 13, 1970–1832 UT; December 12, 1970–1843 UT; June 28, 1970–2001 UT. Characteristics of these events as well as other multiple hard X-ray bursts observed by the author (e.g., Vorpahl, J.: Solar Phys.29, 447, 1973) are given at the end. Data originated from hard X-ray experiments on the OGO-5 (Kinsey Anderson) and OSO-5 (Ken Frost) satellites and were compared so that the effect of pulse pile-up in the OGO-5 data could be observed. The two December flares occurred in different active regions separated by about 100000 km yet both produced hard X-ray bursts with similar structure. This suggests that the two regions were joined by extended field lines with the acceleration mechanism somewhere in between. Although nothing was visible in Hα (such as surges or post flare ejections) that would indicate connecting field lines, higher coronal structures could explain the similarity in hard X-rays from two separate regions.


1977 ◽  
Vol 43 ◽  
pp. 44-44
Author(s):  
R. Pallavicini ◽  
G. Tofani ◽  
G.S. Vaiana

Soft X-ray images of solar active regions obtained by the S-054 experiment on Skylab have been compared with simultaneous interferometric observations at 2.8 cm. The radio data consist of one-dimensional scans with a spatial resolution of 16 arcseconds in the East-West direction. The resolution, although lower than the X-ray telescope resolution, is high enough for a detailed comparison.We have found that there is a general correspondence in position and size between X-ray and radio sources, but relevant differences are also present. In particular, very bright, narrow components at 2.8 cm appear coaligned with regions of very weak X-ray emission. These strong radio components appear to be localized directly above sunspot umbrae.Models of active regions are investigated both for the atmosphere directly over the sunspot umbra and for regions above the adjacent plage. The presence of the magnetic field is taken into account and its effects on the energy dissipation and on propagation of radio waves are discussed.


2016 ◽  
Vol 12 (S328) ◽  
pp. 127-129
Author(s):  
André Chicrala ◽  
Renato Sergio Dallaqua ◽  
Luis Eduardo Antunes Vieira ◽  
Alisson Dal Lago ◽  
Jenny Marcela Rodríguez Gómez ◽  
...  

AbstractThe behavior of Active Regions (ARs) is directly related to the occurrence of some remarkable phenomena in the Sun such as solar flares or coronal mass ejections (CME). In this sense, changes in the magnetic field of the region can be used to uncover other relevant features like the evolution of the ARs magnetic structure and the plasma flow related to it. In this work we describe the evolution of the magnetic structure of the active region AR NOAA12443 observed from 2015/10/30 to 2015/11/10, which may be associated with several X-ray flares of classes C and M. The analysis is based on observations of the solar surface and atmosphere provided by HMI and AIA instruments on board of the SDO spacecraft. In order to investigate the magnetic energy buildup and release of the ARs, we shall employ potential and linear force free extrapolations based on the solar surface magnetic field distribution and the photospheric velocity fields.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Sign in / Sign up

Export Citation Format

Share Document