scholarly journals Multiple Hard X-Ray Bursts and Associated Emissions

1974 ◽  
Vol 57 ◽  
pp. 157-159
Author(s):  
J. Vorpahl

Multiple hard X-radiation, along with associated emission at optical and radio wavelengths, is discussed for three events in particular: December 13, 1970–1832 UT; December 12, 1970–1843 UT; June 28, 1970–2001 UT. Characteristics of these events as well as other multiple hard X-ray bursts observed by the author (e.g., Vorpahl, J.: Solar Phys.29, 447, 1973) are given at the end. Data originated from hard X-ray experiments on the OGO-5 (Kinsey Anderson) and OSO-5 (Ken Frost) satellites and were compared so that the effect of pulse pile-up in the OGO-5 data could be observed. The two December flares occurred in different active regions separated by about 100000 km yet both produced hard X-ray bursts with similar structure. This suggests that the two regions were joined by extended field lines with the acceleration mechanism somewhere in between. Although nothing was visible in Hα (such as surges or post flare ejections) that would indicate connecting field lines, higher coronal structures could explain the similarity in hard X-rays from two separate regions.

Activations and disruptions of dark Ha filaments are very common phenomena on the Sun. They precede the most powerful two-ribbon solar flares, but they also appear far from any active region without any chromospheric flaring. Therefore, until very recently, filament disruptions were considered as interesting, but physically insignificant, flare precursors. Only Skylab observations have shown that the filament disruptions actually represent one of the basic and most important mechanisms of solar activity. These observations have revealed (1) that many coronal transients originate in eruptive filaments without chromospheric flares, (2) that Bruzek’s slow-mode waves originate in disrupted filaments and not in flares themselves, and (3) that many coronal X-ray enhancements outside active regions are also tops of newly formed loops, similar to the post-flare loops observed after filament disruptions in active regions. An interpretation of these data stems from Kopp & Pneuman’s theory of postflare loops: the process that disrupts a filament opens the magnetic field and causes a greatly enhanced mass-flow along the field lines. The open field lines subsequently reconnect, starting from the bottom of the corona and proceeding upwards. This process can last for many hours. Hot loops are first seen in X-rays, later in extreme ultraviolet (e.u.v.) lines, and, after an appropriate cooling time, in Hx as the loop prominence systems. The visibility of loops depends on plasma density. Several observed properties of solar flares indicate that the primary acceleration occurs as the field lines reconnect. Thus the process of particle acceleration in two ribbon flares can last for hours. Because reconnection is accomplished after essentially all filament disruptions, ‘disparitions brusques’ outside active regions should also accelerate particles.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


2020 ◽  
Vol 27 (3) ◽  
pp. 737-745
Author(s):  
Zhijun Chi ◽  
Yingchao Du ◽  
Wenhui Huang ◽  
Chuanxiang Tang

A Thomson scattering X-ray source can provide quasi-monochromatic, continuously energy-tunable, polarization-controllable and high-brightness X-rays, which makes it an excellent tool for X-ray fluorescence computed tomography (XFCT). In this paper, we examined the suppression of Compton scattering background in XFCT using the linearly polarized X-rays and the implementation feasibility of linearly polarized XFCT based on this type of light source, concerning the influence of phantom attenuation and the sampling strategy, its advantage over K-edge subtraction computed tomography (CT), the imaging time, and the potential pulse pile-up effect by Monte Carlo simulations. A fan beam and pinhole collimator geometry were adopted in the simulation and the phantom was a polymethyl methacrylate cylinder inside which were gadolinium (Gd)-loaded water solutions with Gd concentrations ranging from 0.2 to 4.0 wt%. Compared with the case of vertical polarization, Compton scattering was suppressed by about 1.6 times using horizontal polarization. An accurate image of the Gd-containing phantom was successfully reconstructed with both spatial and quantitative identification, and good linearity between the reconstructed value and the Gd concentration was verified. When the attenuation effect cannot be neglected, one full cycle (360°) sampling and the attenuation correction became necessary. Compared with the results of K-edge subtraction CT, the contrast-to-noise ratio values of XFCT were improved by 2.03 and 1.04 times at low Gd concentrations of 0.2 and 0.5 wt%, respectively. When the flux of a Thomson scattering light source reaches 1013 photons s−1, it is possible to finish the data acquisition of XFCT at the minute or second level without introducing pulse pile-up effects.


2000 ◽  
Vol 195 ◽  
pp. 443-444
Author(s):  
B. T. Welsch ◽  
D. W. Longcope

“Transient brightenings” (or “microflares”) regularly deposit 1027 ergs of energy in the solar corona, and account for perhaps 20% of the active corona's power (Shimizu 1995). We assume these events correspond to episodes of magnetic reconnection along magnetic separators in the solar corona. Using the techniques of magnetic charge topology, we model active region fields as arising from normally distributed collections of “magnetic charges”, point-like sources/sinks of flux (or field lines). Here, we present statistically determined separator (X-ray loop) lengths, derived from first principles. We are in the process of statistical calculations of heating rates due to reconnection events along many separators.


1974 ◽  
Vol 57 ◽  
pp. 501-504 ◽  
Author(s):  
G. S. Vaiana ◽  
A. S. Krieger ◽  
J. K. Silk ◽  
A. F. Timothy ◽  
R. C. Chase ◽  
...  

Data obtained by the AS&E X-ray Telescope Experiment during the first Skylab mission have revealed a variety of temporal changes in both the form and brightness of coronal structures. Dynamical changes have been noted in active regions, in large scale coronal structures, and in coronal bright points. The coronal activity accompanying a series of Hα flares and prominence activity between 0800 and 1600 UT on 10 June 1973 in active region 137 (NOAA) at the east limb is shown in Figure 1. It is characterized by increases in the brightness and temperature of active region loops and a dramatic change in the shape and brightness of a loop structure. Figure 2 shows the reconfiguration of an apparent polar crown filament cavity between 1923 UT on 12 June 1973 and 1537 UT on 13 June 1973. A ridge of emitting material which attains a peak brightness at least four times that of the surrounding coronal structures appears within the cavity during the course of the event. Typical X-ray photographs with filters passing relatively soft X-ray wavelengths (3–32, 44–54 Å) show 90 to 100 X-ray bright points (Vaiana et al., 1973). On twelve occasions in the data from the first mission, such bright points were seen to increase in intensity by two orders of magnitude in less than 4 min. Such an event is shown in Figure 3.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


1972 ◽  
Vol 14 ◽  
pp. 761-762
Author(s):  
G. Elwert ◽  
E. Haug

The polarization and angular distribution of solar hard X radiation above 10 keV was calculated under the assumption that the X rays originate as bremsstrahlung from energetic electrons moving in a preferred direction. The source electrons are supposed to have a power-law spectrum. These conditions are to be expected in the impulsive phase of an X-ray burst. The spiral orbits of the electrons around the magnetic field lines are taken into account.


Author(s):  
Alexey Kirichenko ◽  
Sergey Kuzin ◽  
Sergey Shestov ◽  
Artem Ulyanov ◽  
Andrey Pertsov ◽  
...  

We present a description of the recent advances in the development of the KORTES assembly—the first solar oriented mission designed for the Russian segment of the International Space Station. KORTES consists of several imaging and spectroscopic instruments collectively covering a wide spectral range extending from extreme ultraviolet (EUV) wavelengths to X-rays. The EUV telescopes inside KORTES will trace the origin and dynamics of various solar phenomena, e.g., flares, CMEs, eruptions etc. EUV spectra provided by grazing-incidence spectroheliographs will enable precise DEM-diagnostics during these events. The monochromatic X-ray imager will observe the formation of hot plasma in active regions and outside them. The SolpeX module inside KORTES will offer an opportunity to measure fluxes, Doppler shifts and polarization of soft X-ray emission both in lines and continuum. SolpeX observations will contribute to studies of particle beams and chromospheric evaporation. The instrumentation of KORTES will employ a variety of novel multilayer and crystal optics. The deployment of KORTES is planned for 2024.


2008 ◽  
Vol 4 (S257) ◽  
pp. 283-286 ◽  
Author(s):  
N. Gopalswamy ◽  
S. Akiyama ◽  
S. Yashiro

AbstractWe examine the source properties of X-class soft X-ray flares that were not associated with coronal mass ejections (CMEs). All the flares were associated with intense microwave bursts implying the production of high energy electrons. However, most (85%) of the flares were not associated with metric type III bursts, even though open field lines existed in all but two of the active regions. The X-class flares seem to be truly confined because there was no material ejection (thermal or nonthermal) away from the flaring region into space.


2020 ◽  
Vol 500 (3) ◽  
pp. 3142-3150
Author(s):  
F Yusef-Zadeh ◽  
M Wardle ◽  
C Heinke ◽  
I Heywood ◽  
R Arendt ◽  
...  

ABSTRACT The detection of an X-ray filament associated with the radio filament G0.173–0.42 adds to four other non-thermal radio filaments with X-ray counterparts, amongst the more than 100 elongated radio structures that have been identified as synchrotron-emitting radio filaments in the inner couple of degrees of the Galactic centre. The synchrotron mechanism has also been proposed to explain the emission from X-ray filaments. However, the origin of radio filaments and the acceleration sites of energetic particles to produce synchrotron emission in radio and X-rays remain mysterious. Using MeerKAT, VLA, Chandra, WISE, and Spitzer, we present structural details of G0.173–0.42 which consists of multiple radio filaments, one of which has an X-ray counterpart. A faint oblique radio filament crosses the radio and X-ray filaments. Based on the morphology, brightening of radio and X-ray intensities, and radio spectral index variation, we argue that a physical interaction is taking place between two magnetized filaments. We consider that the reconnection of the magnetic field lines at the interaction site leads to the acceleration of particles to GeV energies. We also argue against the synchrotron mechanism for the X-ray emission due to the short ∼30 yr lifetime of TeV relativistic particles. Instead, we propose that the inverse Compton scattering mechanism is more likely to explain the X-ray emission by upscattering of seed photons emitted from a 106  L⊙ star located at the northern tip of the X-ray filament.


Sign in / Sign up

Export Citation Format

Share Document