Heat flow and differences in lithospheric thickness

Observations of surface heat flow may be used to constrain the thickness of the lithosphere only in those regions that have approached conductive equilibrium, presumably the oldest continental and oceanic areas. A model is set up to investigate lithospheric thickness differences between old oceans and old continents. The main variable parameters are the surface heat flow, the mean heat production within the continents, and the vertical distribution of the continental heat production. There need be no thickness difference between an old continental region, with a heat flow of 40 mW m -2 and a uniform crustal heat production of 0.5 μW m -3 , and an old oceanic region. Both these values are close to average for old shield areas. Lower surface heat flow, higher mean heat production or exponental distribution of the same heat sources imply a thicker continental lithosphere. In some places old continental lithosphere is probably thicker than that under oceans.

2020 ◽  
Author(s):  
Andres Tassara ◽  
Joaquín Julve ◽  
Iñigo Echeverría ◽  
Ingo Stotz

<p>The distribution of temperature inside active continental margins plays a fundamental role on regulating first order geodynamic processes as the isostatic balance, rheologic behavior of crust and mantle, magmagenesis, volcanism and seismogenesis. In spite of these major implications, well-constrained 3D thermal models are known for few regions of the world (Europe, Western USA, China) where large geophysical databases have been integrated into compositional and structural models of crust and lithospheric mantle from which a thermal model is derived. Here we present a three-dimensional representation of the distribution of temperature underneath the Andean active margin of South America (10°-45°S) that is based on a geophysically-constrained model for the geometry of the subducted slab, continental lithosphere-asthenosphere boundary (LAB), Moho discontinuity and an intracrustal discontinuity (ICD). This input model was constructed by forward modelling the satellite gravity anomaly under the constraint of most of the seismic information published for this region. We use analytical expressions of 1D conductive continental geotherms with adequate boundary conditions that consider the compositional stratification of crust and mantle included in the input model, and the advective thermal effect of slab subduction. The 1D geotherms are assembled into a 3D volume defining the thermal structure of the study region. We test the influence of several thermal parameters and structural configurations of the Andean lithosphere by comparing the resulting surface heat flow distribution of these different models against a database containing heat flow measurements that we compile from the literature. Our results show that the thermal structure and derived surface heat flow is dominantly controlled by the geometry of the thermal boundary layer at the base of the lithosphere, i.e. the slab upper surface below the forearc and LAB inland. Variations on the modeled configuration of the continental lithosphere (i.e. the way on which the geometry of the continental Moho and ICD are considered into the definition of a space-variable thermal conductivity or the length scale for radiogenic heat production) have an effect on surface heat flow that is lower than the average uncertainty of the measurements and therefore can be considered as second-order. The simplicity of our analytical approach allows us to compute hundreds of different models in order to test the sensitivity of results to changes on thermal parameters (conductivity, heat production, mantle potential temperature, etc), which provides a tool for discussing their possible range of values in the context of a subduction margin. We will also show how variations of these models impact on the Moho temperature and therefore in the expected mechanical behavior of crust and mantle in this geotectonic context</p>


2019 ◽  
Vol 219 (3) ◽  
pp. 1648-1659 ◽  
Author(s):  
B Mather ◽  
L Moresi ◽  
P Rayner

SUMMARY The variation of temperature in the crust is difficult to quantify due to the sparsity of surface heat flow observations and lack of measurements on the thermal properties of rocks at depth. We examine the degree to which the thermal structure of the crust can be constrained from the Curie depth and surface heat flow data in Southeastern Australia. We cast the inverse problem of heat conduction within a Bayesian framework and derive its adjoint so that we can efficiently find the optimal model that best reproduces the data and prior information on the thermal properties of the crust. Efficiency gains obtained from the adjoint method facilitate a detailed exploration of thermal structure in SE Australia, where we predict high temperatures within Precambrian rocks of 650 °C due to relatively high rates of heat production (0.9–1.4 μW m−3). In contrast, temperatures within dominantly Phanerozoic crust reach only 520 °C at the Moho due to the low rates of heat production in Cambrian mafic volcanics. A combination of the Curie depth and heat flow data is required to constrain the uncertainty of lower crustal temperatures to ±73 °C. We also show that parts of the crust are unconstrained if either data set is omitted from the inversion.


2018 ◽  
Vol 12 (2) ◽  
pp. 491-504 ◽  
Author(s):  
John W. Goodge

Abstract. Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2–2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6  ±  1.9 µW m−3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m−2 and an average of 48.0  ±  13.6 mW m−2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tennant Creek inliers of Australia but is dissimilar to other areas like the Central Australian Heat Flow Province that are characterized by anomalously high heat flow. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in the thermal contribution to the overlying ice sheet from upper crustal heat production. Despite these minor differences, ice-sheet models may favor a geologically realistic input of crustal heat flow represented by the distribution of ages and geothermal characteristics found in these glacial clasts.


2017 ◽  
Author(s):  
John W. Goodge

Abstract. Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. Bedrock outcrop is limited to coastal margins and rare inland exposures, yet valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th and K concentrations in a suite of Proterozoic (1.2–2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 μW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33–84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially-sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tenant Creek inliers of Australia, but is dissimilar to other areas characterized by anomalously high heat flow in the Central Australian Heat Flow Province. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in thermal contribution to the overlying ice sheet from upper crustal heat production. Despite their minor differences, ice-sheet models may favor a geologically realistic model of crustal heat flow represented by such a distribution of ages and geothermal characteristics.


1987 ◽  
Vol 24 (8) ◽  
pp. 1583-1594 ◽  
Author(s):  
David M. Fountain ◽  
Matthew H. Salisbury ◽  
Kevin P. Furlong

The Pikwitonei and Sachigo subprovinces of central Manitoba provide a cross-sectional view of the Superior Province crust. In cross section, the upper to mid-level crust is composed of synformal greenstone belts surrounded by tonalitic gneisses, both of which are intruded by granitoid plutons. This crustal structure persists downward into the granulite facies, where keels of the greenstone belts can be found. To constrain thermal models of the crust, we measured heat production and thermal conductivity in 60 rocks from this terrain using standard gamma-ray spectrometry and divided bar techniques. Large vertical and lateral heterogeneities in heat production in the upper crust are evident; heat production is high in granites and metasedimentary rocks, intermediate in tonalite gneisses, and low in the portions of greenstone belts dominated by mafic meta-igneous rocks. In the deeper granulite facies rocks, heat production decreases by a factor of two in the tonalitic gneisses and remains low in the high-grade mafic rocks. When applied to the Pikwitonei–Sachigo crust cross section, the laboratory data here do not support step function or exponential models of the variation of heat production with depth. However, estimates of surface heat flow and surface heat production for various sites in the crustal model yield the well-known linear relationship between surface heat production and surface heat flow observed for heat-flow provinces for both one- and two-dimensional models. This demonstrates that determinations of heat production with depth based on inversion of the linear heat-production–heat-flow relationship are nonunique.


2020 ◽  
Author(s):  
Alberto Pastorutti ◽  
Carla Braitenberg

<p><em>Both energy applications, such as assessing one of the controlling factors of conductive geothermal plays, and geodynamics modelling, are influenced by the large uncertainties arising from uneven sampling of the direct observable of the Earth's thermal state, surface heat flow. Heterogeneity in structure and composition of the continental lithosphere complicate the temperature field even in stable provinces in thermal equilibrium. The measurements deviate from what simple relationships with geological and geophysical data predict, requiring more sophisticated schemes such as those based on multivariate inversion (e.g. Mather et al. 2018) and geostatistics (e.g. the similarity method employed by Lucazeau, 2019).</em></p><p><em>Recently, we aimed at assessing the performance of satellite-gravity-constrained modelling of surface heat flow [1], with the aim of employing the unparalleled spatial uniformity of global gravity models in the fill-in of sparsely sampled surface heat flow data. The model we obtained, in a test area in Central Europe, provided additional information on the lithospheric structure and revealed a satisfactory coherence with the geological features in the area and their controlling effect on the conductive heat transport. That test was based on a fit of radioactive heat production to available heat flow data, based on a misfit linearization and substitution strategy, which we have shown to be independently consistent with available heat production relationships (e.g. Hasterok and Webb, 2017). Furthermore, model validation techniques provide additional metrics on the predictability in areas devoid of heat flow measurements.</em></p><p><em>T</em><em>o reach those objectives, we developed a finite-difference based solver for the heat equation in conductive, stable lithosphere, relying on the assumption of steady state, 3-D heat conduction from the thermal base of the lithosphere to surface. It allows for non-homogeneous heat production and thermal conductivity, and non-flat upper and bottom boundaries. Concurrent joint forward modelling of the gravity field is also possible.<br>Through compromise between complexity and approximation, it was designed favouring easy and fast forward modelling, such as in assessing parameter sensitivity and performing grid searches or parameter fitting. Geological models and parameters can be defined using an user-friendly plain text layer-wise definition, which is then turned into a volume, on a rectangular mesh.<br>Computational requirements are lean: a 75 × 75 × 104 node model such as the one employed in [1] can be forward-modelled on an ordinary workstation in 135 seconds. A direct solver is employed to solve the FD system of linear equations: the Matlab built-in Cholesky decomposition for sparse arrays (Davis, 2006).</em></p><p><em>Albeit initially developed as an ad-hoc tool for a proof of concept, its ease of use and versatility suggest its potential in other applications. We therefore present the solver and the accompanying tool set, both openly available, along with a set of promising examples.<br><br>[1] Pastorutti, A., Braitenberg, C. (2019) "A geothermal application for GOCE satellite gravity data: modelling the crustal heat production and lithospheric temperature field in Central Europe." Geophysical Journal International, doi:10.1093/gji/ggz344</em></p>


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 839-850 ◽  
Author(s):  
Ben Mather ◽  
Javier Fullea

Abstract. Curie depth offers a valuable constraint on the thermal structure of the lithosphere, based on its interpretation as the depth to 580 ∘C, but current methods underestimate the range of uncertainty. We formulate the estimation of Curie depth within a Bayesian framework to quantify its uncertainty across the British Isles. Uncertainty increases exponentially with Curie depth but this can be moderated by increasing the size of the spatial window taken from the magnetic anomaly. The choice of window size needed to resolve the magnetic thickness is often ambiguous but, based on our chosen spectral method, we determine that significant gains in precision can be obtained with window sizes 15–30 times larger than the deepest magnetic source. Our Curie depth map of the British Isles includes a combination of window sizes: smaller windows are used where the magnetic base is shallow to resolve small-scale features, and larger window sizes are used where the magnetic base is deep in order to improve precision. On average, the Curie depth increases from Laurentian crust (22.2±5.3 km) to Avalonian crust (31.2±9.2 km). The temperature distribution in the crust, and associated uncertainty, was simulated from the ensemble of Curie depth realizations assigned to a lower thermal boundary condition of a crustal model (sedimentary thickness, Moho depth, heat production, thermal conductivity), constructed from various geophysical and geochemical datasets. The uncertainty in the simulated heat flow field substantially increases from ±10 mW m−2 for shallow Curie depths at ∼15 km to ±80 mW m−2 for Curie depths >40 km. Surface heat flow observations are concordant with the simulated heat flow field except in regions that contain igneous bodies. Heat flow data within large batholiths in the British Isles exceed the simulated heat flow by ∼25 mW m−2 as a result of their high rates of heat production (4–6 µW m−3). Conversely, heat refraction around thermally resistive mafic volcanics and thick sedimentary layers induce a negative heat flow misfit of a similar magnitude. A northward thinning of the lithosphere is supported by shallower Curie depths on the northern side of the Iapetus Suture, which separates Laurentian and Avalonian terranes. Cenozoic volcanism in Northern Britain and Ireland has previously been attributed to a lateral branch of the proto-Icelandic mantle plume. Our results show that high surface heat flow (>90 mW m−2) and shallow Curie depth (∼15 km) occur within the same region, which supports the hypothesis that lithospheric thinning occurred due to the influence of a mantle plume. The fact that the uncertainty is only ±3–8 km in this region demonstrates that Curie depths are more reliable in hotter regions of the crust where the magnetic base is shallow.


2019 ◽  
Author(s):  
Ben Mather ◽  
Javier Fullea

Abstract. Curie depth offers a valuable constraint on the thermal structure of the lithosphere, based on its interpretation as the depth to 580 °C, but current methods underestimate the range of uncertainty. We formulate the estimation of Curie depth within a Bayesian framework to quantify its uncertainty across the British Isles. Uncertainty increases exponentially with Curie depth but this can be moderated by increasing the size of the spatial window taken from the magnetic anomaly. The choice of window size needed to resolve the magnetic thickness is often ambiguous, but based on our chosen spectral method, we determine that significant gains in precision can be obtained with windows sizes 15–30 times larger than the deepest magnetic source. Our Curie depth map of the British Isles includes a combination of window sizes: smaller windows are used where the magnetic base is shallow to resolve small-scale features, and larger window sizes are used where the magnetic base is deep in order to improve precision. On average, the Curie depth increases from Laurentian crust (22.2 ± 5.3 km) to Avalonian crust (31.2 ± 9.2 km). The temperature distribution in the crust, and associated uncertainty, was simulated from the ensemble of Curie depth realisations assigned to a lower thermal boundary condition of a crustal model (sedimentary thickness, Moho depth, heat production, thermal conductivity), constructed from various geophysical and geochemical data sets. The uncertainty of the simulated heat flow field substantially increases from ± 10 mW m−2 for shallow Curie depths ~ 15 km to ± 80 mW m−2 for Curie depths > 40 km. Surface heat flow observations are concordant with the simulated heat flow field except in regions that contain igneous bodies. Heat flow data within large batholiths in the British Isles exceed the simulated heat flow by ∼ 25 mW m−2 as a result of their high rates of heat production (4–6 μW m−3). Conversely, heat refraction around thermally resistive mafic volcanics and thick sedimentary layers induce a negative heat flow misfit of a similar magnitude. A northward thinning of the lithosphere is supported by shallower Curie depths on the northern side of the Iapetus Suture, which separates Laurentian and Avalonian terranes. Cenozoic volcanism in Northern Britain and Ireland has previously been attributed to a lateral branch of the proto-Icelandic mantle plume. Our results show that high surface heat flow (> 90 mW m−2) and shallow Curie depth (∼ 15 km) occur within the same region, which supports the hypothesis that lithospheric thinning occurred due to the influence of a mantle plume. That the uncertainty is only ± 3–8 km in this region, demonstrates that Curie depths are more reliable in hotter regions of the crust where the magnetic base is shallow.


2010 ◽  
Vol 47 (4) ◽  
pp. 389-408 ◽  
Author(s):  
Claire Perry ◽  
Carmen Rosieanu ◽  
Jean-Claude Mareschal ◽  
Claude Jaupart

Geothermal studies were conducted within the framework of Lithoprobe to systematically document variations of heat flow and surface heat production in the major geological provinces of the Canadian Shield. One of the main conclusions is that in the Shield the variations in surface heat flow are dominated by the crustal heat generation. Horizontal variations in mantle heat flow are too small to be resolved by heat flow measurements. Different methods constrain the mantle heat flow to be in the range of 12–18 mW·m–2. Most of the heat flow anomalies (high and low) are due to variations in crustal composition and structure. The vertical distribution of radioelements is characterized by a differentiation index (DI) that measures the ratio of the surface to the average crustal heat generation in a province. Determination of mantle temperatures requires the knowledge of both the surface heat flow and DI. Mantle temperatures increase with an increase in surface heat flow but decrease with an increase in DI. Stabilization of the crust is achieved by crustal differentiation that results in decreasing temperatures in the lower crust. Present mantle temperatures inferred from xenolith studies and variations in mantle seismic P-wave velocity (Pn) from seismic refraction surveys are consistent with geotherms calculated from heat flow. These results emphasize that deep lithospheric temperatures do not always increase with an increase in the surface heat flow. The dense data coverage that has been achieved in the Canadian Shield allows some discrimination between temperature and composition effects on seismic velocities in the lithospheric mantle.


Sign in / Sign up

Export Citation Format

Share Document