Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions

This paper describes a model to predict the flow of an initially stationary mass of cohesionless granular material down a rough curved bed, and checks it against laboratory experiments that were conducted with several cohesionless granular materials that are released from rest and travel in an exponentially curved chute. We use the depth-averaged field equations of balance of mass and linear momentum as presented by Savage & Hutter (1990). These equations are evolution equations for the transversely averaged stream wise velocity and the distribution of avalanche depths and involve two phenomenological parameters, the internal angle of friction, ϕ, and a bed friction angle, δ, both as constitutive properties of Coulomb-type behaviour. We present the model but do not derive its equations, which are presented in two variants that incorporate weak and strong curvature effects. For granular avalanches which start as parabolic piles, the governing equations (incorporating weak curvature effects) permit similarity solutions. These solutions preserve the parabolic shape and have simple velocity distributions. We present the equations again without detailed explanations. Experiments were performed with seven different granular materials (two classes of glass beads, Vestolen plastic particles, two samples of quartz granules and two types of crunched marmor particles). Piles of finite masses of such granular materials with various initial geometries were released from rest in a 100 mm wide chute having an exponentially curved bed that was lined with Makrolon (a plexiglass), drawing-paper and sandpaper. The granular masses under motion were photographed and video filmed and thus the geometry of the avalanche was recorded as a function of position and time. With all materials and for all the bed linings, the angle of repose and the bed friction angle were determined. The former was identified with the static internal angle of friction. Using a second measuring technique, the effects of the chute walls on the bed friction angle was experimentally determined and incorporated in an effective bed friction angle which thus showed a linear dependence on the pile depth. Coefficients of restitution were also estimated for the particles on the different bed linings. The numerical integration scheme for the general model that was proposed earlier by Savage & Hutter (1989) is a lagrangian finite difference scheme which incorporates numerical diffusion. We present this scheme and analyse its reliability when the numerical diffusion is varied. We also discuss the integration procedure for the similarity solutions. Comparison of the theoretical results with experiments pertain to the similarity model (SM) and the general equation model (GM). Crucial in such comparisons is the identification of initial condition which is not unique from the observational data. For SM it is shown that no initial condition can be found, in general, that would yield computational predictions of the evolution of the position of the leading and trailing edges of the granular avalanche in sufficient agreement with observations. When depth-to-length ratios of the initial pile geometry and the curvature of the bed are sufficiently small, however, then the SM solutions may be used for diagnostic purposes. We finally compare experimental results with computational findings of the GM equations for many combinations of masses of the granular materials and bed linings. It is found that experimental results and theoretical predictions agree satisfactorily if the internal angle of friction, ϕ, exceeds the total bed friction angle, δ, or is not close to it. Limited variations of the bed friction angle along the bed do not seem to have a sizeable effect on the computational results, but it is important that dynamic values rather than static values for ϕ and δ are used in the computations. When δ is very close to ϕ and δ < ϕ , the computational travel time of the granular avalanche exceeds the travel time of experiments considerably. Furthermore, when avalanche masses are reasonably small and coefficients of restitution of the granules on the bed relatively high, again the predictions of the theory overestimate travel times and underestimate avalanche lengths. Thus the theory does seem to be reasonable when the bed friction angle is definitely smaller than the internal angle of friction.

This paper deals with the theoretical-numerical and experimental treatment of two dimensional avalanches of cohesionless granular materials moving down a confined curved chute. Depth-averaged field equations of balance of mass and linear momentum as prescribed by Savage & Hutter (1991) are used. They describe the temporal evolution of the depth averaged streamwise velocity and the distribution of the avalanche depth and involve two phenomenological parameters, the internal angle of friction, ϕ,and the bed friction angle, δ, both as constitutive properties of Coulomb-type behaviour. The equations incorporate weak to moderate curvature effects of the bed. Experiments were carried out with different granular materials in a chute with partly convex and partly concave curved geometry. In these experiments the motion of the granular avalanche is followed from the moment of release to its standstill by using high speed photography, whence recording the geometry of the avalanche as a function of position and time. Two different bed linings, drawing paper and no. 120 SIA sandpaper, were used to vary the bed friction angle, δ. Both, the internal angle of friction, ϕ, and the bed friction angle, δ, were measured, and their values used in the theoretical model. Because of the bump and depending upon the granulate-bed combination an initial single pile of granular avalanche could evolve as a single pile throughout its motion and be deposited above or below the bump in the bed; or it could separate in the course of the motion into two piles which are separately deposited above and below the bump. Comparison of the experimental findings with the computational results proved to lead to good to excellent correspondence between experiment and theory. Even the development of the detailed geometry of the granular avalanche is excellently reproduced by the model equations, if δ < ϕ. Occasional deviations may occur; however, they can in all cases be explained by onsetting instabilities of the numerical scheme or by experimental artefacts that only arise when single particles have shapes prone to rolling.


2018 ◽  
Vol 7 (2) ◽  
pp. 88
Author(s):  
ALIFANDA PINKAN LUDICA ◽  
P. H. GUNAWAN ◽  
ANIQ A. ROHMAWATI

The avalanche is simulated using the Savage-Hutter model with Finite Volume Method (FVM) as a numerical solution in one dimension. The scheme used in FVM is collocated-grid. The aim of this research is to observe the avalanche based on different sediment types on the incline bed with the same initial sediment height. These simulations produce the value of velocity and height avalanche. For each type of sediment has a difference in velocity and height of avalanche affected by the internal angle of friction and the bed friction angle. Sediments with the highest bed friction angle have highest speed. The average velocity of each sediment are Quartz with u = 10.627, Yellow Sand with u = 7.437, and Rice with u = 2.1178 at time t = 1.


1993 ◽  
Vol 39 (132) ◽  
pp. 357-372 ◽  
Author(s):  
Kolumban Hutter ◽  
Ralf Greve

AbstractThis paper is concerned with the motion of an unconfined finite mass of granular material down an inclined plane when released from a rest position in the shape of a circular or elliptical paraboloid. The granular mass is treated as a frictional Coulomb-like continuum with a constant angle of internal friction. The basal friction force is assumed to be composed of a Coulomb-type component with a bed-friction angle that is position-dependent and a viscous Voellmy-type resistive stress that is proportional to the velocity squared. The model equations are those of Hutter and others (in press b) and form a spatially two-dimensional set for the evolution of the avalanche height and the depth averaged in-plane velocity components; they hold for a motion of a granular mass along a plane surface.Similarity solutions, i.e. solutions which preserve the shape and the structure of the velocity field, are constructed by decomposing the motion into that of the centre of mass and the deformation relative to it. This decomposition is possible provided the effect of the Voellmy drag on the deformation is ignored. With it, the depth and velocities relative to those of the centre of mass of the moving pile can be determined analytically. It is shown that the pile has a parabolic cap shape and contour lines are elliptical. The semi-axes and the position and velocity of the centre of mass are calculated numerically. We explicitly show that (i)For two-dimensional spreading, a rigid-body motion does not exist, no matter what be the values of the bed-friction angle and the coefficient of viscous drag.(ii)A steady final velocity of the centre of the mass cannot be assumed, but the motion of the centre of mass depends strongly on the value of the Voellmy coefficient.(iii)The geometry of the moving pile depends on the variation of the bed-friction angle with position, as well as on the value of the coefficient of viscous drag.


1993 ◽  
Vol 39 (132) ◽  
pp. 357-372 ◽  
Author(s):  
Kolumban Hutter ◽  
Ralf Greve

AbstractThis paper is concerned with the motion of an unconfined finite mass of granular material down an inclined plane when released from a rest position in the shape of a circular or elliptical paraboloid. The granular mass is treated as a frictional Coulomb-like continuum with a constant angle of internal friction. The basal friction force is assumed to be composed of a Coulomb-type component with a bed-friction angle that is position-dependent and a viscous Voellmy-type resistive stress that is proportional to the velocity squared. The model equations are those of Hutter and others (in press b) and form a spatially two-dimensional set for the evolution of the avalanche height and the depth averaged in-plane velocity components; they hold for a motion of a granular mass along aplanesurface.Similaritysolutions, i.e. solutions which preserve the shape and the structure of the velocity field, are constructed by decomposing the motion into that of the centre of mass and the deformation relative to it. This decomposition is possible provided the effect of the Voellmy drag on the deformation is ignored. With it, the depth and velocities relative to those of the centre of mass of the moving pile can be determined analytically. It is shown that the pile has a parabolic cap shape and contour lines are elliptical. The semi-axes and the position and velocity of the centre of mass are calculated numerically. We explicitly show that(i)For two-dimensional spreading, a rigid-body motion does not exist, no matter what be the values of the bed-friction angle and the coefficient of viscous drag.(ii)A steady final velocity of the centre of the mass cannot be assumed, but the motion of the centre of mass depends strongly on the value of the Voellmy coefficient.(iii)The geometry of the moving pile depends on the variation of the bed-friction angle with position, as well as on the value of the coefficient of viscous drag.


2012 ◽  
Vol 174-177 ◽  
pp. 24-29
Author(s):  
Bo Zhou ◽  
Ji Wei Li ◽  
Peng Shuai

Abstract. The regular grain orientation of granular materials is a common phenomenon in nature. Based on the research of grain shape effect on mechanical property of granular materials, two kinds of idealized shape grain (kind of long rod and square) assemblies with different grain orientation were studied by simulated biaxial compression test using Discrete Element Method. The significant orientation which can be computed as the mean value of all grain orientation is introduced to represent the orientation regularity of granular materials. In order to study the anisotropy, the mobilized friction angle and volumetric strain of assemblies with different significant orientation were obtained under both vertical and horizontal loading. The results show that the regular orientation of grains influences the movement such as motion and rotation obviously; with the increasing of significant orientation, peak mobilized friction angle of long rod grain assembly gradually increases under horizontal loading, and decreasing under vertical loading.


1989 ◽  
Vol 26 (4) ◽  
pp. 737-742 ◽  
Author(s):  
D. M. Cruden

Goodman and Bray's kinematic model of common toppling can be extended to show that the maximum angle between the slope and the dip direction of the penetrative discontinuity that allows toppling depends on the friction angle of the discontinuities and the angle of the slope when the discontinuities dip into the slope. Flexural toppling can occur when the discontinuities dip in the same direction as the slope but more steeply than the slope and the angle of friction on the discontinuities. Natural examples of toppling in these extended ranges of orientations occur. Key words: toppling, discontinuity, rock slope, anaclinal, cataclinal, plagoclinal, orthoclinal, underdip.


Author(s):  
N. P. Kruyt ◽  
L. Rothenburg

In statistical physics of dilute gases maximum entropy methods are widely used for theoretical predictions of macroscopic quantities in terms of microscopic quantities. In this study an analogous approach to the mechanics of quasi-static deformation of granular materials is proposed. The reasoning is presented that leads to the definition of an entropy that is appropriate to quasi-static deformation of granular materials. This entropy is formulated in terms of contact quantities, since contacts constitute the relevant microscopic level for granular materials that consist of semirigid particles. The proposed maximum entropy approach is then applied to two cases. The first case deals with the probability density functions of contact forces in a two-dimensional assembly with frictional contacts under prescribed hydrostatic stress. The second case deals with the elastic behaviour of two-dimensional assemblies of non-rotating particles with bonded contacts. For both cases the probability density functions of contact forces are determined from the proposed maximum entropy method, under the constraints appropriate to the case. These constraints form the macroscopic information available about the system. With the probability density functions for contact forces thus determined, theoretical predictions of macroscopic quantities can be made. These theoretical predictions are then compared with results obtained from two-dimensional Discrete Element simulations and from experiments.


1989 ◽  
Vol 26 (1) ◽  
pp. 172-172 ◽  
Author(s):  
D. Negussey ◽  
W. K. D. Wijewickreme ◽  
Y. P. Vaid

2018 ◽  
Vol 59 (77) ◽  
pp. 50-58 ◽  
Author(s):  
Yukari Takeuchi ◽  
Koichi Nishimura ◽  
Abani Patra

ABSTRACTAlthough the disaster reduction effects of forest braking have long been known empirically, they have not been known in detail down to recent. In this study, we ascertained forest braking effect by numerical simulations using the avalanche dynamics program, TITAN2D, to model large-scale avalanches. One of these avalanches occurred in the Makunosawa valley, Myoko, and damaged a cedar forest; the others occurred on Mt. Iwate and damaged a subalpine forest. All avalanches damaged many trees and terminated within the forests. In our simulations, the resistance of the forests to avalanches is simulated using a larger bed friction angle. Fitting the observations from the Makunosawa avalanche by trial and error, a bed friction angle of 13–14° in the non-forested area and of 25° in the forested area is obtained. We conducted simulations of the Mt. Iwate avalanches using the same method as for the Makunosawa valley avalanche, and obtained good agreement between observations and simulations. Simulations reveal that without the forest, the avalanche would have traveled at least 200 m farther than the forest's actual end in the Makunosawa valley, and at least 200 m and possibly up to 600 m farther on Mt. Iwate. This study therefore clearly shows that forests provide a braking effect for avalanches.


Sign in / Sign up

Export Citation Format

Share Document