Computers getting the drift

Author(s):  
Diana McCarthy

Natural language processing is the study of computer programs that can understand and produce human language. An important goal in the research to produce such technology is identifying the right meaning of words and phrases. In this paper, we give an overview of current research in three areas: (i) inducing word meaning; (ii) distinguishing different meanings of words used in context; and (iii) determining when the meaning of a phrase cannot straightforwardly be obtained from its parts. Manual construction of resources is labour intensive and costly and furthermore may not reflect the meanings that are useful for the task or data at hand. For this reason, we focus particularly on systems that use samples of language data to learn about meanings, rather than examples annotated by humans.

Author(s):  
Shreyashi Chowdhury ◽  
Asoke Nath

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyse large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them.NLP combines computational linguistics—rule-based modelling of human language—with statistical, machine learning, and deep learning models. Together, these technologies enable computers to process human language in the form of text or voice data and to ‘understand’ its full meaning, complete with the speaker or writer’s intent and sentiment. Challenges in natural language processing frequently involve speech recognition, natural language understanding, and natural language generation. This paper discusses on the various scope and challenges , current trends and future scopes of Natural Language Processing.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


Author(s):  
TIAN-SHUN YAO

With the word-based theory of natural language processing, a word-based Chinese language understanding system has been developed. In the light of psychological language analysis and the features of the Chinese language, this theory of natural language processing is presented with the description of the computer programs based on it. The heart of the system is to define a Total Information Dictionary and the World Knowledge Source used in the system. The purpose of this research is to develop a system which can understand not only Chinese sentences but also the whole text.


Traditional encryption systems and techniques have always been vulnerable to brute force cyber-attacks. This is due to bytes encoding of characters utf8 also known as ASCII characters. Therefore, an opponent who intercepts a cipher text and attempts to decrypt the signal by applying brute force with a faulty pass key can detect some of the decrypted signals by employing a mixture of symbols that are not uniformly dispersed and contain no meaningful significance. Honey encoding technique is suggested to curb this classical authentication weakness by developing cipher-texts that provide correct and evenly dispersed but untrue plaintexts after decryption with a false key. This technique is only suitable for passkeys and PINs. Its adjustment in order to promote the encoding of the texts of natural languages such as electronic mails, records generated by man, still remained an open-end drawback. Prevailing proposed schemes to expand the encryption of natural language messages schedule exposes fragments of the plaintext embedded with coded data, thus they are more prone to cipher text attacks. In this paper, amending honey encoded system is proposed to promote natural language message encryption. The main aim was to create a framework that would encrypt a signal fully in binary form. As an end result, most binary strings semantically generate the right texts to trick an opponent who tries to decipher an error key in the cipher text. The security of the suggested system is assessed..


2019 ◽  
Vol 8 (4) ◽  
pp. 590
Author(s):  
Chhayarani Ram Kinkar ◽  
Yogendra Kumar Jain

Natural language processing is a very active area of research and development, there is not a single agreed upon a method that would satisfy everyone for the use of natural language to operate electronic devices or other practical applications. But there are some aspects used from many years in the formulation and solution of computational problem arising in natural language processing. This paper describes a model in which numerical values are assigned to word of natural language speech data set to convert the information present in natural language speech data set into an intermediate numeric form as a structured data set. The intermediated numerical values of each word will be used for generation of machine code which will be easily understand by electronic devices to draw inferences from data set. The designed model is useful for a number of practical applications and very simple to implement.  


Author(s):  
K. Ahkouk ◽  
M. Machkour ◽  
K. Majhadi ◽  
R. Mama

Abstract. Sequence to sequence models have been widely used in the recent years in the different tasks of Natural Language processing. In particular, the concept has been deeply adopted to treat the problem of translating human language questions to SQL. In this context, many studies suggest the use of sequence to sequence approaches for predicting the target SQL queries using the different available datasets. In this paper, we put the light on another way to resolve natural language processing tasks, especially the Natural Language to SQL one using the method of sketch-based decoding which is based on a sketch with holes that the model incrementally tries to fill. We present the pros and cons of each approach and how a sketch-based model can outperform the already existing solutions in order to predict the wanted SQL queries and to generate to unseen input pairs in different contexts and cross-domain datasets, and finally we discuss the test results of the already proposed models using the exact matching scores and the errors propagation and the time required for the training as metrics.


Sign in / Sign up

Export Citation Format

Share Document