scholarly journals Quantum mechanics, gravity and modified quantization relations

Author(s):  
Xavier Calmet

In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective (reduced Planck’s constant). We set a bound on the deviation of the value of at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10 16  GeV.

Author(s):  
Jean Vignon Hounguevou ◽  
Daniel Sabi Takou ◽  
Gabriel Y. H. Avossevou

In this paper, we study coherent states for a quantum Pauli model through supersymmetric quantum mechanics (SUSYQM) method. From the point of view of canonical quantization, the construction of these coherent states is based on the very important differential operators in SUSYQM call factorization operators. The connection between classical and quantum theory is given by using the geometric properties of these states.


The article discusses a new understanding of the reality in the 20th century. Since the key figure in these changes was the Danish physicist Niels Bohr, we refer to his early and later articles to analyze the use of the term “reality”. Through an analysis of the terms, it is shown that Bohr describes discoveries in earlier articles that are inconsistent with old concepts in physics, and it is these questions that will further lead him to a new understanding of reality. In the article we also indicate how many times and in what contexts the term “reality” is used. Further, we find that the term “reality” is more common in later articles than in his earlier works (Copenhagen’s interpretation of quantum theory had not yet been formulated at the time of writing the early works). Through the analyzing of usage of certain terms, we show how the emphasis in the early and late Bohr’s articles shifts. For many years, the Danish physicist has sought to clarify quantum theory. In some later articles, we note that the problems affect not only physical, but also other areas of knowledge. We also analyze the use of the term in later articles. This analysis shows how Niels Bohr’s discoveries in the nature of the objects of the micro-world lead him to questions about the nature of reality. How discoveries in the microcosm affect the new conception of reality is best traced in controversy with other physicists. As the most striking example, we took the article “Discussion with Einstein on epistemological problems in atomic physics”. In this article, Bohr describes the specific behavior of micro-objects, features of physical experiments and proves the idea that a fundamentally new (including ontological plan) understanding of physical processes is needed. An analysis of the terms shows that, from Bohr’s point of view, reality itself is as described by its quantum mechanics. We strive to show the evolution of Bohr’s views in the context of how they influenced the revision of all physics. We conclude that the discovery of stationary states in an atom is the first step to rethinking philosophical questions of a nature of reality.


1989 ◽  
Vol 04 (24) ◽  
pp. 2329-2337 ◽  
Author(s):  
H. KLEINERT

We point out that there is a natural geometric procedure for constructing the quantum theory of a particle in a general metric-affine space with curvature and torsion. Quantization rules are presented and expressed in the form of a simple path integral formula which specifies compactly a new combined equivalence and correspondence principle. The associated Schrödinger equation has no extra curvature nor torsion terms that have plagued earlier attempts. Several well-known physical systems are invoked to suggest the correctness of the proposed theory.


Author(s):  
Barbara Amaral

In addition to the important role of contextuality in foundations of quantum theory, this intrinsically quantum property has been identified as a potential resource for quantum advantage in different tasks. It is thus of fundamental importance to study contextuality from the point of view of resource theories, which provide a powerful framework for the formal treatment of a property as an operational resource. In this contribution, we review recent developments towards a resource theory of contextuality and connections with operational applications of this property. This article is part of the theme issue ‘Contextuality and probability in quantum mechanics and beyond’.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andreas Crivellin ◽  
Martin Hoferichter

Abstract With the long-standing tension between experiment and Standard-Model (SM) prediction in the anomalous magnetic moment of the muon aμ recently reaffirmed by the Fermilab experiment, the crucial question becomes which other observables could be sensitive to the underlying physics beyond the SM to which aμ may be pointing. While from the effective field theory (EFT) point of view no direct correlations exist, this changes in specific new physics models. In particular, in the case of explanations involving heavy new particles above the electroweak (EW) scale with chiral enhancement, which are preferred to evade exclusion limits from direct searches, correlations with other observables sensitive to EW symmetry breaking are expected. Such scenarios can be classified according to the SU(2)L representations and the hypercharges of the new particles. We match the resulting class of models with heavy new scalars and fermions onto SMEFT and study the resulting correlations with h → μμ and Z → μμ decays, where, via SU(2)L symmetry, the latter process is related to Z → νν and modified W-μ-ν couplings.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050126
Author(s):  
D. Cogollo ◽  
Yohan M. Oviedo-Torres ◽  
Yoxara S. Villamizar

In light of the upcoming measurement of the muon anomalous magnetic moment [Formula: see text], we revisit the corrections to [Formula: see text] in the context of the [Formula: see text] gauge symmetry. We investigate three models based on this gauge symmetry and express our results in terms of the energy scale at which the [Formula: see text] symmetry is broken. To draw solid conclusions we put our findings into perspective with existing collider bounds. Lastly, we highlight the difference between our results and those rising from [Formula: see text] constructions.


2009 ◽  
Vol 2009 ◽  
pp. 1-7
Author(s):  
T. P. Singh

The cosmological constant problem is principally concerned with trying to understand how the zero-point energy of quantum fields contributes to gravity. Here we take the approach that by addressing a fundamental unresolved issue in quantum theory, we can gain a better understanding of the problem. Our starting point is the observation that the notion of classical time is external to quantum mechanics. Hence there must exist an equivalent reformulation of quantum mechanics which does not refer to an external classical time. Such a reformulation is a limiting case of a more general quantum theory which becomes nonlinear on the Planck mass/energy scale. The nonlinearity gives rise to a quantum-classical duality which maps a “strongly quantum, weakly gravitational” dynamics to a “weakly quantum, strongly gravitational” dynamics. This duality predicts the existence of a tiny nonzero cosmological constant of the order of the square of the Hubble constant, which could be a possible source for the observed cosmic acceleration. Such a nonlinearity could also be responsible for the collapse of the wave function during a quantum measurement.


Sign in / Sign up

Export Citation Format

Share Document