scholarly journals Shallow water equations for equatorial tsunami waves

Author(s):  
Anna Geyer ◽  
Ronald Quirchmayr

We present derivations of shallow water model equations of Korteweg–de Vries and Boussinesq type for equatorial tsunami waves in the f -plane approximation and discuss their applicability. This article is part of the theme issue ‘Nonlinear water waves’.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2020 ◽  
Vol 28 (2) ◽  
pp. 93-114
Author(s):  
Stelian Ion ◽  
Stefan-Gicu Cruceanu ◽  
Dorin Marinescu

AbstractWe investigate the Riemann Problem for a shallow water model with porosity and terrain data. Based on recent results on the local existence, we build the solution in the large settings (the magnitude of the jump in the initial data is not supposed to be “small enough”). One di culty for the extended solution arises from the double degeneracy of the hyperbolic system describing the model. Another di culty is given by the fact that the construction of the solution assumes solving an equation which has no global solution. Finally, we present some cases to illustrate the existence and non-existence of the solution.


2006 ◽  
Vol 16 (01) ◽  
pp. 119-137 ◽  
Author(s):  
RICARDO BARROS

A full set of conservation laws for the two-layer shallow water equations is presented for the one-dimensional case. We prove that all the conservation laws are linear combination of the equations for the conservation of mass and velocity (in each layer), total momentum and total energy.This result generalizes that of Montgomery and Moodie that found the same conserved quantities by restricting their search to the multinomials expressions in the layer variables. Though the question of whether or not there are only a finite number of these quantities is left as an open question by the authors. Our work puts an end to this: in fact, no more conservation laws are admitted for the two-layer shallow water equations. The key mathematical ingredient of the method proposed leading to the result is the Frobenius problem. Moreover, we present a full set of conservation laws for the classical one-dimensional shallow water model with topography, by using the same techniques.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2832 ◽  
Author(s):  
Shin-Jye Liang ◽  
Chih-Chieh Young ◽  
Chi Dai ◽  
Nan-Jing Wu ◽  
Tai-Wen Hsu

A two-dimensional non-hydrostatic shallow-water model for weakly dispersive waves is developed using the least-squares finite-element method. The model is based on the depth-averaged, nonlinear and non-hydrostatic shallow-water equations. The non-hydrostatic shallow-water equations are solved with the semi-implicit (predictor-corrector) method and least-squares finite-element method. In the predictor step, hydrostatic pressure at the previous step is used as an initial guess and an intermediate velocity field is calculated. In the corrector step, a Poisson equation for the non-hydrostatic pressure is solved and the final velocity and free-surface elevation is corrected for the new time step. The non-hydrostatic shallow-water model is verified and applied to both wave and flow driven fluid flows, including solitary wave propagation in a channel, progressive sinusoidal waves propagation over a submerged bar, von Karmann vortex street, and ocean circulations of Dongsha Atolls. It is found hydrostatic shallow-water model is efficient and accurate for shallow water flows. Non-hydrostatic shallow-water model requires 1.5 to 3.0 more cpu time than hydrostatic shallow-water model for the same simulation. Model simulations reveal that non-hydrostatic pressure gradients could affect the velocity field and free-surface significantly in case where nonlinearity and dispersion are important during the course of wave propagation.


2001 ◽  
Vol 449 ◽  
pp. 313-339 ◽  
Author(s):  
OLIVER BÜHLER ◽  
TIVON E. JACOBSON

We present a theoretical and numerical investigation of longshore currents driven by breaking waves on beaches, especially barred beaches. The novel feature considered here is that the wave envelope is allowed to vary in the alongshore direction, which leads to the generation of strong dipolar vortex structures where the waves are breaking. The nonlinear evolution of these vortex structures is studied in detail using a simple analytical theory to model the effect of a sloping beach. One of our findings is that the vortex evolution provides a robust mechanism through which the preferred location of the longshore current can move shorewards from the location of wave breaking. Such current dislocation is an often-observed (but ill-understood) phenomenon on real barred beaches.To underpin our results, we present a comprehensive theoretical description of the relevant wave–mean interaction theory in the context of a shallow-water model for the beach. Therein we link the radiation-stress theory of Longuet-Higgins & Stewart to recently established results concerning the mean vorticity generation due to breaking waves. This leads to detailed results for the entire life-cycle of the mean-flow vortex evolution, from its initial generation by wave breaking until its eventual dissipative decay due to bottom friction.In order to test and illustrate our theory we also present idealized nonlinear numerical simulations of both waves and vortices using the full shallow-water equations with bottom topography. In these simulations wave breaking occurs through shock formation of the shallow-water waves. We note that because the shallow-water equations also describe the two-dimensional flow of a homentropic perfect gas, our theoretical and numerical results can also be applied to nonlinear acoustics and sound–vortex interactions.


2017 ◽  
Vol 17 (2) ◽  
pp. 105
Author(s):  
Nuraini Nuraini ◽  
Syamsul Rizal ◽  
Marwan Marwan

Abstract. Modeling the dynamics of seawater typically uses a shallow water model. The shallow water model is derived from the mass conservation equation and the momentum set into shallow water equations. A two-dimensional shallow water equation alongside the model that is integrated with depth is described in numerical form. This equation can be solved by finite different methods either explicitly or implicitly. In this modeling, the two dimensional shallow water equations are described in discrete form using explicit schemes.Keyword: shallow water equation, finite difference and schema explisit.REFERENSI 1. Bunya, S., Westerink, J. J. dan Yoshimura. 2005. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids. 47: 1451-1468.2. Kampf Jochen. 2009. Ocean Modelling For Beginners. Springer Heidelberg Dordrecht. London New York.3. Rezolla, L 2011. Numerical Methods for the Solution of Partial Diferential Equations. Trieste. International Schoolfor Advanced Studies.4. Natakussumah, K. D., Kusuma, S. B. M., Darmawan, H., Adityawan, B. M. Dan  Farid, M. 2007. Pemodelan Hubungan Hujan dan Aliran Permukaan pada Suatu DAS  dengan Metode Beda Hingga. ITB Sain dan Tek. 39: 97-123.5. Casulli, V. dan Walters, A. R. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids. 32: 331-348.6. Triatmodjo, B. 2002. Metode Numerik  Beta Offset. Yogyakarta.


1976 ◽  
Vol 1 (15) ◽  
pp. 63 ◽  
Author(s):  
Charles L. Mader

The wave motion resulting from cavities in the ocean surface was investigated using both the long wave, shallow water model and the incompressible Navier-Stokes equations. The fluid flow resulting from the calculated collapse of the cavities is significantly different for the two models. The experimentally observed flow resulting from explosively formed cavities is in better agreement with the flow calculated using the incompressible Navier-Stokes model. The resulting wave motions decay rapidly to deep water waves. Large cavities located under the surface of the ocean will be more likely to result in Tsunami waves than cavities on the surface. This is contrary to what has been suggested by the upper critical depth phenomenon.


2020 ◽  
Vol 32 (12) ◽  
pp. 124117
Author(s):  
M. W. Harris ◽  
F. J. Poulin ◽  
K. G. Lamb

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2054
Author(s):  
Naoki Kuroda ◽  
Katsuhide Yokoyama ◽  
Tadaharu Ishikawa

Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.


Sign in / Sign up

Export Citation Format

Share Document