scholarly journals Beam emittance preservation using Gaussian density ramps in a beam-driven plasma wakefield accelerator

Author(s):  
M. D. Litos ◽  
R. Ariniello ◽  
C. E. Doss ◽  
K. Hunt-Stone ◽  
J. R. Cary

A current challenge that is facing the plasma wakefield accelerator (PWFA) community is transverse beam emittance preservation. This can be achieved by balancing the natural divergence of the beam against the strong focusing force provided by the PWFA plasma source in a scheme referred to as beam matching. One method to accomplish beam matching is through the gradual focusing of a beam with a plasma density ramp leading into the bulk plasma. Here, the beam dynamics in a Gaussian plasma density ramp are considered, and an empirical formula is identified that gives the ramp length and beam vacuum waist location needed to achieve near-perfect matching. The method uses only the beam vacuum waist beta function as an input. Numerical studies show that the Gaussian ramp focusing formula is robust for beta function demagnification factors spanning more than an order of magnitude with experimentally favourable tolerances for future PWFA research facilities. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.

Author(s):  
A. Martinez de la Ossa ◽  
R. W. Assmann ◽  
M. Bussmann ◽  
S. Corde ◽  
J. P. Couperus Cabadağ ◽  
...  

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


Author(s):  
N. Vafaei-Najafabadi ◽  
L. D. Amorim ◽  
E. Adli ◽  
W. An ◽  
C. I. Clarke ◽  
...  

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


1987 ◽  
Vol 15 (2) ◽  
pp. 192-198 ◽  
Author(s):  
J. J. Su ◽  
T. Katsouleas ◽  
J. M. Dawson ◽  
P. Chen ◽  
M. Jones ◽  
...  

Author(s):  
Zhi Yao ◽  
Revathi Jambunathan ◽  
Yadong Zeng ◽  
Andrew Nonaka

We present a high-performance coupled electrodynamics–micromagnetics solver for full physical modeling of signals in microelectronic circuitry. The overall strategy couples a finite-difference time-domain approach for Maxwell’s equations to a magnetization model described by the Landau–Lifshitz–Gilbert equation. The algorithm is implemented in the Exascale Computing Project software framework, AMReX, which provides effective scalability on manycore and GPU-based supercomputing architectures. Furthermore, the code leverages ongoing developments of the Exascale Application Code, WarpX, which is primarily being developed for plasma wakefield accelerator modeling. Our temporal coupling scheme provides second-order accuracy in space and time by combining the integration steps for the magnetic field and magnetization into an iterative sub-step that includes a trapezoidal temporal discretization for the magnetization. The performance of the algorithm is demonstrated by the excellent scaling results on NERSC multicore and GPU systems, with a significant (59×) speedup on the GPU using a node-by-node comparison. We demonstrate the utility of our code by performing simulations of an electromagnetic waveguide and a magnetically tunable filter.


2020 ◽  
Vol 22 (1) ◽  
pp. 013037
Author(s):  
B M Alotaibi ◽  
R Altuijri ◽  
A F Habib ◽  
A Hala ◽  
B Hidding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document