scholarly journals Identifying economically viable tidal sites within the Alderney Race through optimization of levelized cost of energy

Author(s):  
Z. L. Goss ◽  
D. S. Coles ◽  
M. D. Piggott

Costs of tidal stream energy generation are anticipated to fall considerably with array expansion and time. This is due to both economies of volume, where arrays comprising of large numbers of turbines can split fixed costs over a greater number of devices, and learning rates, where the industry matures and so arrays of the same size become cheaper due to lessons learned from previous installations. This paper investigates how tidal energy arrays can be designed to minimize the levelized cost of energy (LCOE), by optimizing not only the location but also the number of devices, to find a suitable balance between decreased costs due to economies of volume and diminishing returns due to global blockage effects. It focuses on the Alderney Race as a case study site due to the high velocities found there, making it a highly suitable site for large-scale arrays. It is demonstrated that between 1 and 2 GW could be feasibly extracted as costs in the tidal industry fall, with the LCOE depending greatly on the assumed costs. A Monte–Carlo analysis is undertaken to account for variability in capital and operational cost data used as inputs to the array optimization. Once optimized, the estimated P50 LCOE of an 80 MW array is £110/MWh. This estimate aligns closely with the level of subsidy considered for tidal stream projects in the Alderney Race in the past. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.

Author(s):  
D. S. Coles ◽  
L. S. Blunden ◽  
A. S. Bahaj

This research provides an updated energy yield assessment for a large tidal stream turbine array in the Alderney Race. The original array energy yield estimate was presented in 2004. Enhancements to this original work are made through the use of a validated two-dimensional hydrodynamic model, enabling the resolution of flow modelling to be improved and the impacts of array blockage to be quantified. Results show that a range of turbine designs (i.e. rotor diameter and power capacity) are needed for large-scale development, given the spatial variation in bathymetry and flow across the Alderney Race. Array blockage causes a reduction in flow speeds in the array of up to 2.5 m s −1 , increased flow speeds around the array of up to 1 m s −1 and a reduction in the mean volume flux through the Alderney Race of 8%. The annual energy yield estimate of the array is 3.18 TWh, equivalent to the electricity demand of around 1 million homes. The capacity factor of the array is 18%, implying sub-optimal array design. This result demonstrates the need for turbine rated speed to be selected based on the altered flow regime, not the ambient flow. Further enhancement to array performance is explored through increases to rotor diameter and changes to device micro-siting, demonstrating the significant potential for array performance improvement. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


2020 ◽  
Author(s):  
Michela De Dominicis ◽  
Judith Wolf ◽  
Dina Sadykova ◽  
Beth Scott ◽  
Alexander Sadykov ◽  
...  

<p>The aim of this work is to analyse the potential impacts of tidal energy extraction on the marine environment. We wanted to put them in the broader context of the possibly greater and global ecological threat of climate change. Here, we present how very large (hypothetical) tidal stream arrays and a ''business as usual'' future climate scenario can change the hydrodynamics of a seasonally stratified shelf sea, and consequently modify ecosystem habitats and animals’ behaviour.</p><p>The Scottish Shelf Model, an unstructured grid three-dimensional ocean model, has been used to reproduce the present and the future state of the NW European continental shelf. While the marine biogeochemical model ERSEM (European Regional Seas Ecosystem Model) has been used to describe the corresponding biogeochemical conditions. Four scenarios have been modelled: present conditions and projected future climate in 2050, each with and without very large scale tidal stream arrays in Scottish Waters (UK). This allows us to evaluate the potential effect of climate change and large scale energy extraction on the hydrodynamics and biogeochemistry. We found that climate change and tidal energy extraction both act in the same direction, in terms of increasing stratification due to warming and reduced mixing, however, the effect of climate change is ten times larger. Additionally, the ecological costs and benefits of these contrasting pressures on mobile predator and prey marine species are evaluated using ecological statistical models.</p>


Author(s):  
Angela Vazquez ◽  
Gregorio Iglesias

Potential areas for tidal stream energy development are conventionally selected on the basis of resource assessments. For all the importance of the resource, there are other elements (technological, economic, spatial, etc.) that must be taken into account in this selection. The objective of the present work is to develop a new methodology to select tidal stream hotspots accounting for all these relevant elements, and to apply it to a case study, showing in the process how the potential for tidal energy development can be fundamentally altered by technological, economic and spatial constraints. The case study is conducted in the Bristol Channel and Severn Estuary (UK), one of the regions with the largest tidal resource in the world. First, the most energetic areas are identified by means of a hydrodynamics model, calibrated and validated with field data. Second, the method calculates the energy that can be harnessed in these areas by means of a geospatial Matlab-based program designed ad hoc, and on the basis of the power curve and dimensions of a specific tidal turbine. Third, the spatial distribution of the levelised cost of energy (LCOE) is calculated, and a number of locations are selected as potential tidal sites. The fourth element in the approach is the consideration of restrictions due to overlap with other marine uses, such as shipping. As a result, potential conflict-free areas for tidal stream energy exploitation at an economical cost are identified. Thus, the case study illustrates this holistic approach to selecting tidal stream sites and the importance of elements other than the resource, which – for all its relevance – is shown to not guarantee by itself the potential for tidal stream energy development.


Author(s):  
W. M. J. Batten ◽  
M. E. Harrison ◽  
A. S. Bahaj

The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.


Author(s):  
Maxime Thiébaut ◽  
Jean-François Filipot ◽  
Christophe Maisondieu ◽  
Guillaume Damblans ◽  
Christian Jochum ◽  
...  

A system of two coupled four-beam acoustic Doppler current profilers was used to collect turbulence measurements over a 36-h period at a highly energetic tidal energy site in Alderney Race. This system enables the evaluation of the six components of the Reynolds stress tensor throughout a large proportion of the water column. The present study provides mean vertical profiles of the velocity, the turbulence intensity and the integral lengthscale along the streamwise, spanwise and vertical direction of the tidal current. Based on our results and considering a tidal-stream energy convertor (TEC) aligned with the current main direction, the main elements of turbulence prone to affect the structure (material fatigue) and to alter power generation would likely be: (i) the streamwise turbulence intensity ( I x ), (ii) the shear stress, v ′ w ′ ¯ , (iii) the normal stress, u ′ 2 ¯ and (iv) the vertical integral lengthscale ( L z ). The streamwise turbulence intensity, ( I x ), was found to be higher than that estimated at other tidal energy sites across the world for similar height above bottom. Along the vertical direction, the length ( L z ) of the large-scale turbulence eddies was found to be equivalent to the rotor diameter of the TEC Sabella D10. It is considered that the turbulence metrics presented in this paper will be valuable for TECs designers, helping them optimize their designs as well as improve loading prediction through the lifetime of the machines. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


Author(s):  
Sunny Shah ◽  
Hannah Buckland ◽  
Philipp R. Thies ◽  
Claire Cohen ◽  
Tom Bruce

The financial performance of a marine energy project is based on assumptions with significant uncertainty. To fully appraise the risk, potential investors require an understanding of the likelihood of deviations from the assumed most likely case for a project’s financial performance. A Monte Carlo Analysis (MCA) model with flexible user defined uncertainty definitions for all inputs is developed for this study. A realistic tidal energy project is used as a case study to compare the central, optimistic and pessimistic Levelised Cost of Energy (LCOE) and Internal Rate of Return (IRR) values derived using commonly used deterministic methods and the probabilistic MCA model. The improvement in decision support due to the probabilistic analysis is shown and the possibility for misinterpreting the deterministic results in highlighted. Two sensitivity analysis methods are employed to identify key risks and emphasise the need to use the most appropriate method for the type of analysis being conducted. Finally, the significance of some commonly ignored parameters is tested and shown to be important for accurately appraising the investment risk in a real project. Thus this paper provides guidance and tools to help investors make informed decisions with confidence.


Sign in / Sign up

Export Citation Format

Share Document