Unexpected, mystifying but simple three-dimensional dynamic fracture phenomena

Author(s):  
Koji Uenishi

This contribution addresses what can be learnt from our recent experimental observations of dynamic fracture development in brittle solid materials with real three-dimensional configurations. It is pointed out that the three-dimensional dynamic behaviour of (quasi-)brittle solids is essentially different not only from the one-dimensional dynamic one but also from the three-dimensional static one. The experimental observations include those of cylindrical concrete columns pressurized by deflagration at the centre and ice spheres subjected to dynamic impact at the bottom. Surprisingly, plain fracture patterns can be found through these experiments, but it does not seem simple to describe or predict the involved physical process by conventional analytical treatment or numerical simulations. Indeed, our understanding of mechanical details of actual three-dimensional fracture is still limited, especially in dynamic cases where the length scale of fracture and relevant waves is of the order of the size of solids under consideration. Although a more sophisticated physical interpretation including the dynamic interaction of waves in a relatively high-frequency range is required, the discussed dynamics of three-dimensional fracture development will assist in generating precisely controlled dynamic fracture networks that can be used for practical purposes of dismantling solid structural components and mitigating risks of catastrophic failures. This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe’.

Author(s):  
Koji Uenishi

Solid materials have been used extensively for various kinds of structural components in our surroundings. Stability of such solid structures, including not only machinery, architectural and civil structures but also our solid earth, is largely governed by fracture development in the solids. Especially, dynamic fracture, once occurring—quite often unexpectedly—evolves very rapidly and can lead to catastrophic structural failures and disasters like earthquakes. However, contrary to slowly enlarging fractures that can be recognized spatio-temporally in detail, it is extremely difficult to trace dynamically growing fractures even in controlled laboratory experimental conditions, and its physics still remains unexplored. This theme issue introduces and summarizes recent advancements in our understanding of the widespread topics of dynamic fracture of solids from well-assorted perspectives, involving laboratory experiments, simulations and analytical methods as well as field observations, with the common background of mechanics of fracture. Multi-scale subjects range from fracture of metals at atom or particle levels to disastrous rock bursts in deep gold mines and detection of unique signals before devastating fracture such as large, global-scale earthquakes.This article is part of the theme issue ‘Fracture dynamics of solid materials: from particles to the globe'.


1999 ◽  
Vol 6 (3/4) ◽  
pp. 187-194 ◽  
Author(s):  
R. E. Ergun ◽  
C. W. Carlson ◽  
L. Muschietti ◽  
I. Roth ◽  
J. P. McFadden

Abstract. We present detailed observations of electromagnetic waves and particle distributions from the Fast Auroral SnapshoT (FAST) satellite which reveal many important properties of large-amplitude, spatially-coherent plasma structures known as "fast solitary structures" or "electron phase space holes". Similar structures have been observed in several regions of the magnetosphere including the auroral zone, plasma sheet boundary layer, and bow shock. There has been rapid theoretical progress in understanding these structures. Solitary structures can develop from bidirectional electron beams. Once developed, the one-dimensional properties parallel to the magnetic field can be adequately described by analytical treatment as BGK structures. There remains, however, several unanswered questions. The origin of the bidirectional electron beams, the development of two-or three-dimensional structures, and the observed association with the ion cyclotron frequency are not well understood.


Author(s):  
Sahir N. Butt ◽  
Günther Meschke

AbstractIn peridynamic models for fracture, the dissipated fracture energy is regularized over a non-local region denoted as the peridynamic horizon. This paper investigates the influence of this parameter on the dynamic fracture process in brittle solids, using two as well as three dimensional simulations of dynamic fracture propagation in a notched plate for two loading cases. The predicted crack speed for the various scenarios of the initially stored energy, also known as the velocity toughening behavior as well as characteristics of the crack surface topology obtained in different crack propagation regimes in 3D computational simulations are compared with the experimentally observed crack velocity and fracture surfaces for Polymethyl Methacrylate (PMMA) specimens. In addition, we investigate the influence of the specimen size on the dynamic fracture process using two dimensional peridynamic simulations. The fracture strengths and the velocity toughening relationship obtained from different specimen sizes are compared with the Linear Elastic Fracture Mechanics (LEFM) size effect relationship and with results from experiments, respectively.


2011 ◽  
Vol 121-126 ◽  
pp. 3361-3365
Author(s):  
Wen Bin Sun ◽  
Wei Jia Guo ◽  
Jin Xiao Liu

At present, the mines in our country gradually shift from the shallow mining to the deep mining, but the deep well floor is particularly serious hazard by high pressure underground water.This article considers the high pressure underground water as three-dimensional transient flow, sets up mechanical model by combining mechanical knowledge and to analyze the destructive action on floor from two aspects. On the one hand, researching the impact destruction of high pressure water at different positions of floor ; the other hand, to analyze mechanical function on fracture development from high pressure water.


Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2018 ◽  
Vol 13 (2) ◽  
pp. 187-211
Author(s):  
Patricia E. Chu

The Paris avant-garde milieu from which both Cirque Calder/Calder's Circus and Painlevé’s early films emerged was a cultural intersection of art and the twentieth-century life sciences. In turning to the style of current scientific journals, the Paris surrealists can be understood as engaging the (life) sciences not simply as a provider of normative categories of materiality to be dismissed, but as a companion in apprehending the “reality” of a world beneath the surface just as real as the one visible to the naked eye. I will focus in this essay on two modernist practices in new media in the context of the history of the life sciences: Jean Painlevé’s (1902–1989) science films and Alexander Calder's (1898–1976) work in three-dimensional moving art and performance—the Circus. In analyzing Painlevé’s work, I discuss it as exemplary of a moment when life sciences and avant-garde technical methods and philosophies created each other rather than being classified as separate categories of epistemological work. In moving from Painlevé’s films to Alexander Calder's Circus, Painlevé’s cinematography remains at the forefront; I use his film of one of Calder's performances of the Circus, a collaboration the men had taken two decades to complete. Painlevé’s depiction allows us to see the elements of Calder's work that mark it as akin to Painlevé’s own interest in a modern experimental organicism as central to the so-called machine-age. Calder's work can be understood as similarly developing an avant-garde practice along the line between the bestiary of the natural historian and the bestiary of the modern life scientist.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Kyo-in Koo ◽  
Andreas Lenshof ◽  
Le Thi Huong ◽  
Thomas Laurell

In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document