The optical spike

Among the signs of activity in excitable membranes, the action current (electrical spike) has been extensively studied. Recently, a new approach with optical methods has been rewarding. In nerves, a transient, rapid change of light scattering, birefringence and induced fluorescence can be observed during the passage of the action current. These optical effects are synchronous with the electrical spike and are therefore called the optical spikes. Birefringence decreases during excitation in the giant axon of the squid, the walking nerves of Maia , the vagus nerve of the rabbit, but it increases in the olfactory nerve of the pike, which contains 4 million nonmedullated nerve fibres. Light scattering increases or decreases depending on the angle of observation. Vitally stained nerves with fluorescent probes show an increase and a shift in the wavelength distribution of the fluorescent spike.

2013 ◽  
Vol 284-287 ◽  
pp. 988-995 ◽  
Author(s):  
Tomáš Vít ◽  
Vít Lédl ◽  
Roman Dolecek ◽  
Pavel Psota

The presented paper compares results of measured temperature fields achieved by digital holographic interferometry (DHI) and hot wire anemometry. It shows the possibility of using holographic interferometry for the visualization of temperature fields in periodically moving fluids. The measurement of temperature fields in moving fluids has many inherent difficulties. The usage of point temperature measurement methods, such as Constant Current Anemometry (CCA), is limited to frequencies up to 3000 Hz. This frequency should be the limiting factor for using CCA in fluids when a rapid change of temperature occurs. This shortcoming of CCA measurements could be overcome through the use of optical methods such as digital holographic interferometry. It is necessary to employ a special holographic setup with double sensitivity instead of the commonly used Mach-Zehnder type of holographic interferometer in order to attain parameters sufficient for the studied case. This setup is not as light-efficient as the Mach-Zehnder type but has double sensitivity. The special technique of acquiring and phase averaging the results from holographic interferometry is presented. The paper also shows the first results of an evaluated 3D temperature field.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 758-766 ◽  
Author(s):  
SONIA MELLE ◽  
MIGUEL A. RUBIO ◽  
GERALD G. FULLER

The formation and orientation of field-induced structures in magnetorheological (MR) fluids subject to rotating magnetic fields have been studied using two optical methods: scattering dichroism and small angle light scattering (SALS). The SALS patterns show how these chain-like aggregates follow the magnetic field with the same frequency but with a retarded phase angle for all the frequencies measured. Using scattering dichroism two different behaviors for both, dichroism and phase lag, are found below or above a critical frequency. Experimental results have been reproduced by a simple model considering the torques balance on the chain-like aggregates.


2007 ◽  
Vol 292 (6) ◽  
pp. C2032-C2045 ◽  
Author(s):  
Peter M. Piermarini ◽  
Inyeong Choi ◽  
Walter F. Boron

The squid giant axon is a classic model system for understanding both excitable membranes and ion transport. To date, a Na+-driven Cl-HCO3− exchanger, sqNDCBE—related to the SLC4 superfamily and cloned from giant fiber lobe cDNA—is the only HCO3−-transporting protein cloned and characterized from a squid. The goal of our study was to clone and characterize another SLC4-like cDNA. We used degenerate PCR to obtain a partial cDNA clone (squid fiber clone 3, SF3), which we extended in both the 5′ and 3′ directions to obtain the full-length open-reading frame. The predicted amino-acid sequence of SF3 is similar to sqNDCBE, and a phylogenetic analysis of the membrane domains indicates that SF3 clusters with electroneutral Na+-coupled SLC4 transporters. However, when we measure pHi and membrane potential—or use two-electrode voltage clamping to measure currents—on Xenopus oocytes expressing SF3, the oocytes exhibit the characteristics of an electrogenic Na/HCO3− cotransporter, NBCe. That is, exposure to extracellular CO2/HCO3− not only causes a fall in pHi, followed by a robust recovery, but also causes a rapid hyperpolarization. The current-voltage relationship is also characteristic of an electrogenic NBC. The pHi recovery and current require HCO3− and Na+, and are blocked by DIDS. Furthermore, neither K+ nor Li+ can fully replace Na+ in supporting the pHi recovery. Extracellular Cl− is not necessary for the transporter to operate. Therefore, SF3 is an NBCe, representing the first NBCe characterized from an invertebrate.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Corsin Battaglia ◽  
Jordi Escarre ◽  
Karin Söderström ◽  
Franz-Josef Haug ◽  
Didier Dominé ◽  
...  

AbstractWe investigate the influence of refractive index contrast on the light scattering properties of nanotextured interfaces, which serve as front contact for p-i-n thin-film silicon solar cells. We here focus on ZnO surfaces with randomly oriented pyramidal features, known for their excellent light trapping performance. Transparent replicas, with a different refractive index, but practically identical morphology compared to their ZnO masters, were fabricated via nanoimprinting. Within the theoretical framework we recently proposed, we show how the angular and spectral dependence of light scattered by nanostructures with identical morphology but different refractive index may be related to each other allowing direct comparison of their light trapping potential within the device.


Author(s):  
Michael F. Modest ◽  
Gopalendu Pal

The spherical harmonics (PN) method, especially its lowest order, i.e., the P1 or differential approximation, enjoys great popularity because of its relative simplicity and compatibility with standard models for the solution of the (overall) energy equation. Low-order PN approximations perform poorly in the presence of strongly nonisotropic intensity distributions, especially in optically thin situations within nonisothermal enclosures (due to variation in surface radiosities across the enclosure surface, causing rapid change of irradiation over incoming directions). A previous modification of the PN approximation, i.e., the modified differential approximation (MDA), separates wall emission from medium emission to reduce the nonisotropy of intensity. Although successful, the major drawback of this method is that the intensity at the walls is set to zero into outward directions, while incoming intensity is nonzero, resulting in a discontinuity at grazing angles. To alleviate this problem, a new approach, termed here the “advanced differential approximation (ADA),” is developed, in which the directional gradient of the intensity at the wall is minimized. This makes the intensity distribution continuous for the P1 method and mostly continuous for higher-order PN methods. The new method is tested for a 1-D slab and concentric spheres, and for a 2-D medium. Results are compared with the exact analytical solutions for the 1-D slab as well as the Monte Carlo-based simulations for 2-D media.


Sign in / Sign up

Export Citation Format

Share Document