On the amphibian Crassigyrinus scoticus watson from the carboniferous

The holotype of Crassigyrinus scoticus Watson from the Viséan (Lower Carboniferous) of Edinburgh shows the side of the skull of a very primitive amphibian with fish-like proportions, an osteolepiform fish configuration of bones round the nostril and a preopercular bone on the cheek. ‘ Macromerium scoticum ’ Lydekker from the same locality and horizon proves to be a Crassigyrinus mandibular ramus. This is corroborated by discovery of a skull and anterior skeleton of Crassigyrinus from the Namurian (basal Upper Carboniferous) of Cowdenbeath, Fife. The skull of Crassigyrinus is also shown to have a loosely articulated basioccipital which did not form a finished occipital condyle and a mandible with coronoid teeth. However, it shares a number of derived (synapomorph) characters with the anthracosauroid amphibia of the Carboniferous and early Permian, notably the characteristic tabular horn, the probable absence of posttemporal fossae, the nature of the dermal ornament, the histology of the teeth and a true basipterygoid articulation. The last character may also indicate relations to loxommatid and seymouriamorph amphibia and amniotes. The pattern of bones of the Crassigyrinus skull table, however, is the primitive tetrapod (‘temnospondyl’) one. The postcranial skeleton is both primitive and degenerate. The vertebrae each have a single crescent-shaped centrum (‘intercentrum ’) and neural arches as poorly ossified, unfused bilateral halves. Prezygapophyses are unbuttressed facets and postzygapophyses totally lacking. There is room for a virtually unconstricted notochord. The diameter of the centra increases posteriorly from the small (partly reconstructed) atlas-axis complex. Ribs are long, well-ossified and cylindrical, but lack well-ossified rib-heads. The fore-limb is minute, with a typical primitive tetrapod humerus, which, however, retains some foramina otherwise seen only in Ichthyostega and fishes. The elongate ventral scales are unlike those of any ‘labyrinthodont’ amphibia. It is suggested that the apparent ‘otic notches’ of Crassigyrinus may mark the position of persistent spiracles, while the stapes, not preserved in any specimen, may have been like that known in the Coal Measure anthracosaurs and in the primitive temnospondyl Greererpeton . Combined with an air-filled spiracular cleft the stapes could have been tuned to underwater rather than aerial hearing. Crassigyrinus appears to have been a large Amphiuma -like underwater predator. A case is made for the ‘sister-group’ relation of Crassigyrinus to the anthracosauroids and a cladogram presented of the subgroups involved. It is, however, difficult to make a case for the close relationship of Crassigyrinus and the Seymouriamorpha and the closeness of relationship of the latter to anthracosauroids is questioned. Crassigyrinus shares several primitive characters with Ichthyostega , but they are only distantly related, so that the loss of those characters in all other tetrapods must have been polyphyletic. There are other characters in which one or the other is clearly the more primitive, but the polarity of a number of alternative character states in the two genera is equivocal. The cladistic use of out-group comparison is impotent to solve the problem because rival sister-groups for the Tetrapoda have been proposed using, inter alia , the disputed characters.

2006 ◽  
Vol 37 (3) ◽  
pp. 257-279 ◽  
Author(s):  
William Wolfe ◽  
Kelly Miller ◽  
Olof Biström

AbstractThe phylogeny of the Hydroporinae is investigated in a cladistic analysis emphasizing placement of the genus Peschetius Guignot, historically placed in the tribe Hydroporini. Sixty-nine adult and larval morphological characters were coded for 61 species of Hydroporinae representing eight of the nine tribes. Cladistic analysis of the data resulted in 396 most parsimonious cladograms (length = 176, CI = 46, RI = 80). The results indicate that the genus Peschetius is the sister group to the tribe Bidessini based mainly on an unambiguous character, the presence of a prominent internal spermathecal spine, and several other more ambiguous or homoplasious characters. The tribe Bidessini is expanded to include the genus Peschetius, and it is formally transferred from the tribe Hydroporini. Other results indicating interesting relationships of tribes and genera within Hydroporinae are also discussed. Results include; 1) a dramatically paraphyletic Hydroporini with Laccornellus Roughley and Wolfe, Canthyporus Zimmermann and Hydrocolus Roughley and Larson in basal positions within the phylogeny, 2) Hydrovatus Motschulsky and Queda Sharp resolved as sister groups and not closely related to Methlini van den Branden, 3) support for close relationship of Pachydrus Sharp (Pachydrini Biström, Nilsson and Wewalka) with Hyphydrini Sharp, 4) paraphyly of Hygrotus Stephens sensu lato with the relationship H. (Coelambus) Thomson + (Hygrotus sensus stricto + Hydrovatini)) suggesting recognition of Coelambus and Hygrotus as separate genera, 5) close relationship between the Australian genera of Hydroporini and Hyphydrini and 6) the nesting of Vatellini within a group of Hydroporini.


2003 ◽  
Vol 77 (1) ◽  
pp. 172-188 ◽  
Author(s):  
David S Berman ◽  
Amy C. Henrici

Superbly preserved tarsi of a new, undescribed, primitive member of Diadectidae and of Diadectes, the best known member of the family, are described. The major distinction between them is the retention of sutures in the astragalus of the former which clearly indicate an origin from the fusion of three separate ossifications considered homologues of the primitive amphibian tibiale, intermedium, and proximal centrale. Among the Diadectomorpha (includes also Limnoscelidae and Tseajaiidae) only Diadectidae possesses an astragalus, which is considered a synapomorphy of the family within this grouping. Furthermore, the sister-group relationship of the new, undescribed diadectid to the other diadectids demonstrates a transformational, phylogenetic homology of the astragalus via the ontogenetic fusion of the primitive amphibian tarsal bones. The astragalus of diadectids is identical to those of late Paleozoic terrestrial amniotes in structure and relationship to neighboring elements. This, plus the wide acceptance of a close relationship between Diadectomorpha and Amniota, is cited as suggestive of an identical developmental origin of their astragali.In diadectids, including fully mature individuals, an unusual reduction or absence of ossification of some central and distal tarsal bones has resulted in an unique tarsus with large unoccupied areas and a structural pattern in which the only bony link between the tarsus and the digits is via the fourth distal tarsal, producing a crude facsimile of the lacertilian mesotarsal joint. Such a joint would have permitted, as in lacertilians, a wide range of movements which may have served several important functions: 1) maintaining an anteriorly directed pes to maximize the force of its posterior thrust during limb retraction, 2) placement of the pes close to the body midline for greater stride length and more efficient support and greater maneuverability during locomotion.


1938 ◽  
Vol 70 (11) ◽  
pp. 230-232 ◽  
Author(s):  
C. Stuart Walley

The following notes were assembled in arranging the Protarchoides material in the National Collection. In establishing the identity of Protarchoides mellipes (Prov.) it has been found necessary to synonymize one species. A species allied to mellipes is described as new and a table is provided for the separation of the four known North American species. The recording of Trichiosoma as host for a member of this genus is further evidence of the close relationship of the genus with Protarchus Foer.


2003 ◽  
Vol 40 (4) ◽  
pp. 527-556 ◽  
Author(s):  
Michael deBraga

A morphological study of the postcranial skeleton of Procolophon trigoniceps from the Lower Triassic of South Africa and Antarctica is undertaken. Procolophon shares a sister-group relationship with the procolophonid Tichvinskia from the Lower Triassic of Russia and is a basal member of Procolophonidae. This clade also includes the enigmatic taxon Sclerosaurus, believed most recently to be a pareiasaur relative. Owenettids form a separate lineage from Procolophonidae and are predominantly restricted to the Permian of both South Africa and Madagascar. A phylogenetically based assessment is considered, in which specialized modern taxa (sand lizards) are compared to their nonfossorial sister clade, allowing for "key innovations" to be identified. A similar comparison between owenettids and procolophonids reveals a number of apparent "key innovations" within procolophonids that are suggestive of a burrowing lifestyle for Procolophon.


2007 ◽  
Vol 44 (3) ◽  
pp. 120-125 ◽  
Author(s):  
B. Zheng ◽  
L. Xiao ◽  
X. Wang ◽  
D. Li ◽  
Y. Lu ◽  
...  

AbstractTo study the function of the 49 kDa excretory-secretory (ES) protein gene (P49) of Trichinella, the genes was amplified by RT-PCR from RNA of Trichinella spiralis and Trichinella nativa and several Chinese Trichinella isolates of domestic animals, and sequenced after being cloned. The amplified products of these parasites produced bands of about 950 bp. The 97.2 % to 100 % nucleotides identity and 94.3 % to 100 % identity of deduced amino acids among P49 gene of these Trichinella strains showed the close relationship of these parasites. The P49 gene of T. nativa was cloned into the BamHI site of the prokaryotic expression vector pET-30a, and the recombinant vector was expressed. The expressed product was 40.8 kDa in size. In Western blot analysis, the expressed product was reactive to sera of mice infected with T. nativa, T. spiralis and their Chinese geographical strains.


2006 ◽  
Vol 177 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Marie Pincemaille-Quillevere ◽  
Eric Buffetaut ◽  
Frédéric Quillevere

Abstract Since the 19th century, the Campanian and Maastrichtian continental deposits of southern France have yielded numerous dinosaur remains [Le Loeuff, 1991; 1998; Buffetaut et al., 1997; Laurent et al., 1991; Allain and Suberbiola, 2003]. The ornithopod remains that have not been referred to the hadrosaurids have been systematically attributed to Rhabdodon [Buffetaut and Le Loeuff, 1991; Buffetaut et al., 1996; Garcia et al., 1999; Pincemaille-Quillévéré, 2002]. This genus, initially named by Matheron [1869] after its discovery in the lower Maastrichtian of La Nerthe (Bouches-du-Rhône), belongs to the Euornithopoda [sensu Sereno, 1999]. Rhabdodon represents the most common element of the dinosaur assemblages from the late Cretaceous of southern France [e.g. Allain and Suberbiola, 2003]. Nevertheless, since the localities have only provided some fragmentary material [Pincemaille-Quillévéré, 2002], the global morphology of this dinosaur and its phylogenetic placement within the euornithopods are still debated. The cranial morphology of Rhabdodon is particularly poorly understood due to the rarity of cranial remains preserved in the localities of southern France [Matheron, 1869; Garcia et al., 1999; Buffetaut et al., 1999; Pincemaille-Quillévéré, 2002]. Buffetaut et al. [1999] first mentioned the discovery of a braincase (M4) referred to Rhabdodon, at Massecaps, a locality close to the village of Cruzy (Hérault, France). More recently, a new braincase (MN25) has been discovered at Montplô Nord, another locality close to Cruzy (specimens M4 and MN25 are conserved in the Museum of Cruzy). Both these localities have revealed a diverse and abundant vertebrate fauna suggesting a late Campanian to early Maastrichtian age [Buffetaut et al., 1999]. These braincases are described here in an attempt to detect potential autapomorphic characters in Rhabdodon, and compared to a more complete braincase of Tenontosaurus, an euornithopod from the Lower Cretaceous of North America, considered as the sister group of Rhabdodon [Weishampel et al., 1998; 2003; Garcia et al., 1999; Pincemaille-Quillévéré, 2002], in order to determine the potential differences and synapomorphies between the occiputs of the two genera. Finally, the braincases from Cruzy are compared to those of the other euornithopods described in the literature. Specimen M4 (figs. 1–4) is incomplete but exceptionally well preserved. This braincase belongs to a juvenile individual, as shown by the numerous visible suture lines between the different cranial elements. Specimen MN25 (fig. 5) is badly deformed and attributable to an adult individual. Until now, all the ornithopods from the Upper Cretaceous of southern France have been referred either to hadrosaurs or to Rhabdodon. The Hadrosauridae show a low nuchal crest and their exoccipitals meet and form a bar on the dorsal border of the foramen magnum, excluding the supraoccipital from this border. Specimens M4 and MN25 do not present any nuchal crest and the supraoccipital participates in the dorsal border of the foramen magnum. Both braincases M4 and MN25 are therefore attributable to Rhabdodon. Specimens M4 and MN25 have been compared to the occiput of a juvenile Tenontosaurus tilletti (fig. 6 : MCZ 4205, conserved in the Museum of Comparative Zoology, Harvard University). This reveals that Tenontosaurus and Rhabdodon share numerous characters : (1) the exoccipitals form the lateral borders of the foramen magnum, its ventral border being occupied by the basioccipital; (2) the occipital condyle is partly constituted by the exoccipitals, and in the same proportions; (3) the supraoccipital is rostrally oriented; (4) the suture line located between the prootic and the laterosphenoid shows the same outline; (5) the cresta prootica starts within the paroccipital process and extends onto the opisthotic; (6) the cresta prootica is transversal and non-horizontal; (7) the distribution of the cranial nerves is homologuous along the lateral surface of the braincase. Nevertheless, the braincase of Tenontosaurus differs from that of Rhabdodon in several significant respects : (1) the exoccipitals are dorsally connected, excluding the supraoccipital from the dorsal border of the foramen magnum; (2) two small dorsal humps are present at the level of the suture of the exoccipitals; (3) the supraoccipital is excluded from the dorsal border of the foramen magnum, which gives it a triangular shape; (4) the paroccipital processes are short, laterally flattened, and wing-shaped, and are more mediodorsally oriented than in Rhabdodon; (5) the cresta prootica follows a concave line and ends up on the prootic, at the level of the opening of the trigeminal nerve; (6) the external curve of the laterosphenoids is stronger; (7) the suture between the basioccipital and the opisthotic is very clear. The first of these unshared characters suggests that Rhabdodon belongs to Norman’s [1984] ‘hypsilophodontoid’ clade and Tenontosaurus to the more evolved ‘iguanodontoid’ clade. The fusion of the exoccipitals on the dorsal border of the foramen magnum, together with other cranial adaptations, may have reduced the stress caused by a more elaborate mastication. Rhabdodon appears to have had a more primitive type of mastication. The strip formed by the reunion of the exoccipitals is less expanded dorsoventrally in Tenontosaurus tilletti than in the ‘iguanodontoid’ and ‘hadrosauroid’ clades. Tenontosaurus may therefore represent an intermediate group between the ‘hypsilophodontoid’ and ‘iguanodontoid’ clades.


2021 ◽  
Author(s):  
Dmitry Mikhailovich Lazutkin ◽  
Oleg Vladimirovich Bukov ◽  
Denis Vagizovich Kashapov ◽  
Albina Viktorovna Drobot ◽  
Maria Alexandrovna Stepanova ◽  
...  

Abstract New geological structures – displaced blocks of salt diapirs’ overburden – were identified in the axial part of the Dnieper-Donets basin (DDB) beside one of the largest salt domes due to modern high-precision gravity and magnetic surveys and their joint 3D inversion with seismic and well log data. Superposition of gravity lineaments and wells penetrating Middle and Lower Carboniferous below Permian and Upper Carboniferous sediments in proximity to salt allowed to propose halokinetic model salt overburden displacement, assuming Upper Carboniferous reactivation. Analogy with rafts and carapaces of the Gulf of Mexico is considered in terms of magnitude of salt-induced deformations. Density of Carboniferous rocks within the displaced flaps evidence a high probability of hydrocarbon saturation. Possible traps include uplifted parts of the overturned flaps, abutting Upper Carboniferous reservoirs, and underlying Carboniferous sequence. Play elements are analyzed using analogues from the Dnieper-Donets basin and the Gulf of Mexico. Hydrocarbon reserves of the overturned flaps within the study area are estimated to exceed Q50 (Р50) = 150 million cubic meters of oil equivalent.


Sign in / Sign up

Export Citation Format

Share Document