The comparative anatomy of two copepods, a predatory calanoid and a particle-feeding mormonilloid

The skeletomusculature of a large predatory calanoid, Euaugaptilus placitus , is described and compared with that of a small, particle-feeding mormonilloid, Mormonilla phasma . The comparisons are extended to other copepod groups for which data are available, to identify any general patterns in copepod musculature. Anatomy has been related to presumed function wherever possible, and functional interpretations are offered of the feeding and swimming apparatus in both species. The trunk muscles of Euaugaptilus and Mormonilla , conform to the typical copepod pattern of paired dorsal and ventral bundles but Euaugaptilus lacks the oblique muscles that originate on the postmaxillary apodemes in Mormonilla and other copepods. The prosome—urosome joint has a similar structure in both genera but the joints are not homologous because Euaugaptilus is a gymnoplean in which the prosome—urosome division occurs between thoracic somites 6 and 7 whereas in Mormonilla , a podoplean, it occurs between somites 5 and 6. Differentiation of the prosome-urosome joint during ontogeny and the development of trunk tagmosis are described. The difference between Podoplea and Gymnoplea is merely that these processes are completed by the second copepodid stage in the former, by the third in the latter. It is concluded that the primary factor affecting trunk tagmosis is the evolution of an efficient metasome, specialized for rapid swimming movements. Differences in metasome composition between gymnopleans and podopleans may be related to behavioural differences. The former jump by using their swimming legs primarily as an escape reaction whereas normal swimming in the latter involves repeated jumping movements of the swimming legs. The musculature of the cephalosomic limbs of Euaugaptilus is complex. Each limb, especially those involved in prey capture and manipulation, has the ability to perform several roles and it is this multiplicity of function that explains the relative complexity of the musculature. The ventral cephalic tendon system is correspondingly elaborate and additional apodemes, anterior to the mandibles and medial to the maxillae, are present in Euaugaptilus. Mormonilla has secondarily reduced musculature, especially in the cephalosome. It is a specialized particle-feeder but each limb performs relatively simple movements and has a restricted range of functions. The numbers of extrinsic limb muscles are reduced and the posterior ventral cephalic tendon is lost, resulting in a change in site of origin for some remaining muscles. Interpretations of the segmental composition of the mouthparts are summarized. Lack of evidence has made these highly subjective. A common pattern of homologies is established based on their musculature, which allows the coxa-basis joint to be identified as a reference point. It is concluded that the protopod of the postmandibular limbs (maxillules, maxillae and maxillipeds) primitively comprised three segments but that in most extant copepods the praecoxa and coxa are partly or completely fused, forming a syncoxa. There is no evidence of a praecoxa in the antennae and mandibles, which both have a protopod comprising coxa and basis only. The copepod antennule is primitively uniramous and multisegmented. Reports of a vestigial second ramus in some siphonostomatoids are examined and reinterpreted. Recent studies of planktonic feeding mechanisms and increased knowledge of the dominance of viscous forces in the environment experienced by copepods have led to the generation of a new model of copepod feeding. This is applied to the predatory behaviour of Euaugaptilus and to the feeding of Mormonilla on suspended particles. Fine scale adaptations of the feeding appendages, such as the button setae of Euaugaptilus and the interlocking setae of the filter basket walls of Mormonilla , are also described. The gross anatomy of the gut is described for both genera and compared with that of a range of other copepods. The skeletomusculature of the swimming legs is described. Both Euaugaptilus and Mormonilla display the characteristic copepod patterns of extrinsic and intrinsic muscles. Fine scale adaptations of the legs are also examined. Euaugaptilus feathers its oar-like rami so that they form a median longitudinal keel during the recovery stroke. Mormonilla closes up its rami and flexes its legs posteriorly during the recovery stroke, as does Euaugaptilus also, but is unable to feather its leg rami in the same way. Data on the ontogeny of the musculature during the nauplius stages are summarized for representatives of the Harpacticoida, Cyclopoida and Calanoida. There is no clear indication as to which of these taxa is the most primitive but the Calanoida appears to exhibit the most regular anamorphic developmental sequence.

2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Monserrat Del Caño ◽  
Flavio Quintana ◽  
Ken Yoda ◽  
Giacomo Dell’Omo ◽  
Gabriela S. Blanco ◽  
...  

1999 ◽  
Vol 77 (7) ◽  
pp. 1064-1074 ◽  
Author(s):  
Andrew N Iwaniuk ◽  
Sergio M Pellis ◽  
Ian Q Whishaw

We tested the validity of previously described relationships between forelimb structure and behaviour in mammals by measuring the forelimbs of 22 species of North American carnivores. Nine ratios were calculated from these measurements and made independent of the effects of allometry and phylogeny through the use of log-transformed regressions and independent contrasts analysis. The ratios were then directly compared with two behavioural traits: arboreal locomotion and vertebrate predation. Only five of the nine ratios exhibited a significant relationship with arboreal locomotion and three with vertebrate predation. It was concluded that the brachial index, relative size of the olecranon process, and total forelimb robusticity may be reliable predictors of arboreal locomotion, and that the brachial index, relative size of the olecranon process, and radial robusticity may be accurate predictors of vertebrate predation. The data also suggest that the morphology of the lower forelimb may be an important indicator of prey-capture and feeding behaviour in carnivores and could be used in conjunction with craniodental variables to extrapolate predatory behaviour of extinct species.


2011 ◽  
Vol 158 (12) ◽  
pp. 2653-2660 ◽  
Author(s):  
Howard I. Browman ◽  
Jeannette Yen ◽  
David M. Fields ◽  
Jean-François St-Pierre ◽  
Anne Berit Skiftesvik

2011 ◽  
Vol 7 (4) ◽  
pp. 517-520 ◽  
Author(s):  
Berith B. Bressendorff ◽  
Søren Toft

Nutritional ecological theory predicts that predators should adjust prey capture and consumption rates depending on the prey's nutritional composition. This would affect the predator's functional response, at least at high prey densities, i.e. near predator satiation. Using a simple fruitfly-wolf spider laboratory system in Petri dishes, we found that functional responses changed from day to day over a 7 day period. After 1 to 2 days of feeding, dome-shaped functional responses (i.e. reduced predation at highest prey densities) appeared in spiders fed nutritionally imbalanced prey, compared with steadily increasing or asymptotic functional responses with nutritionally near-optimal prey. Later again (days 5–7), the difference disappeared as the level of the functional response was reduced in both treatments. Experiments with adult females in spring and subadult spiders in autumn revealed opposite patterns: a dome-shaped response with high-lipid prey for reproductive females, for which protein-rich prey are optimal, and a dome-shaped (or simply reduced) response with high-protein prey for pre-winter subadults, for which high-lipid flies are the optimal prey. Our results have implications for predation theory and models of biological control that have, so far, neglected nutritional aspects; in particular, the dynamic nutritional state of the predators should be incorporated.


Behaviour ◽  
2002 ◽  
Vol 139 (5) ◽  
pp. 573-584 ◽  
Author(s):  
Marcelo de Oliveira Gonzaga ◽  
João Vasconcellos-Neto

AbstractIn this study we report on the predatory behaviour of Anelosimus jabaquara considering the frequency of bites in each prey body part during the immobilization phase, the proportion of the consumption time expended in each of these parts and the relative participation on capture and feeding processes by spiders of different body sizes. Generally, few individuals actively take part in prey immobilization events, biting mostly on fly's legs (body segments which promote vibrations strong enough to attract spiders, but not to dissuade attacks). However, many spiders usually take part in the consumption of this medium size prey item. During the consumption phase appendages were rarely used, probably due to the higher nutritional value and biomass availability of central body segments (thorax, abdomen and head). Non-aggressive contests over displaced prey body parts were frequently seen during collective feeding in natural colonies, but not in small artificial groups in laboratory.


2017 ◽  
Author(s):  
Sydney K. Brannoch ◽  
Gavin J. Svenson

Hörnig, Haug, & Haug (2017) published a description of a new specimen of Santanmantis axelrodi MB.I.2068, an extinct species of praying mantis from the Crato Formation of Brazil. According to Hörnig et al. (2017) the discovery of this new specimen brought with it implications for praying mantis character evolution and predatory behavior and it is with these lines of reasoning that we find fault. More specifically, we point to four flawed assumptions in their study that led to their unsubstantiated conclusion that S. axelrodi employed their mesothoracic legs in prey capture.


Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 229-238 ◽  
Author(s):  
M. Tirone

Abstract. Temperature variations in large portions of the mantle are mainly controlled by the reversible and irreversible transformation of mechanical energy related to pressure and viscous forces into internal energy along with diffusion of heat and chemical reactions. The simplest approach to determine the temperature gradient is to assume that the dynamic process involved is adiabatic and reversible, which means that entropy remains constant in the system. However, heat conduction and viscous dissipation during dynamic processes effectively create entropy. The adiabatic and non-adiabatic temperature variation under the influence of a constant or varying gravitational field are discussed in this study from the perspective of the Joule–Thomson (JT) throttling system in relation to the transport equation for change of entropy. The JT model describes a dynamic irreversible process in which entropy in the system increases but enthalpy remains constant (at least in an equipotential gravitational field). A comparison is made between the thermal gradient from the JT model and the thermal gradient from two models, a mantle convection and a plume geodynamic model, coupled with thermodynamics including a complete description of the entropy variation. The results show that the difference is relatively small and suggests that thermal structure of the asthenospheric mantle can be well approximated by an isenthalpic model when the formulation includes the effect of the gravitational field. For non-dynamic or parameterized mantle dynamic studies, the JT formulation provides a better description of the thermal gradient than the classic isentropic formulation.


2020 ◽  
Vol 398 ◽  
pp. 41-47 ◽  
Author(s):  
Fahad Mohanad Kadhim ◽  
Marfa Salah Hayal

This work involved two major parts: the first Part is the experimental part included manufacturing ankle foot orthotics, measure the (the reaction force of the ground, pressure distribution) for both normal (healthy) and sound side (intake) legs in two case, the first measurement when the patient walking without orthosis while the second test when the patient dressed up the flexible (AFO). The pressure generated between leg and calf part is measured by F-Socket devise. The experimental part also consist test the mechanical properties of a suggestion composite material. The second Part is the (FEM) finite element analysis for numerical simulation part during which the stresses are calculated using ANSYS 14.5 software. Experimental work was done on a case study suffering from low level spinal cord trauma he has good control of the trunk muscles but the muscle weakness and nerve damage for right leg. The patient with age, weight of 30years, 75kg, respectively. The Results show the parameters of test for both legs (left and right) in two cases. The results show that the data of the gait cycle in the case of the patient wearing the brace is more acceptable and we notice improvement in the performance of walking steps and reduce the difference between the infected leg and natural and this indicates the good evaluation of this orthosis. Max pressure obtained is 1.53*10^5MPa from F .Socket at calf region .Max stress Calculated at Posterior ankle joint because it is flexible Position The equivalent Von-Mises stress and the safety factor for fatigue of the composite material gave good results this led to the longer life design.


Author(s):  
Tom Moens ◽  
Magda Vincx

Observations on living estuarine nematodes show that previous feeding type classifications do not accurately represent the trophic structure of an intertidal mudflat in the Westerschelde Estuary (Netherlands). A new scheme with six major nematode feeding guilds is proposed: (1) microvores; (2) ciliate feeders; and (3) deposit feeders sensu stricto are all nematodes without a distinct buccal armature. In the first two groups bacteria and protozoa, respectively are the major particulate food sources, while other items are included in the diet of the third. The three other categories are recognized among the nematodes with a buccal armature: (4) epigrowth feeders; (5) facultative predators; and (6) predators. Diatoms and other microalgae are an important particulate food for many epigrowth feeders. The importance of bacteria as a food source for these nematodes remains poorly documented. A strictly or mainly predatory behaviour has been described for only few species from the study area. Several nematodes, however, are facultative predators. The predatory strategy of Calyptronema maxweberi, as described in this paper, suggests the use of a paralysing or lethal secretion in prey capture, which, to our knowledge, is the first report for aquatic nematodes. Furthermore, the importance of sources other than particulate food in free-living aquatic nematodes is stressed. Our observations show that many aquatic nematodes are in fact opportunistic feeders, which may change feeding strategies in response to available food.


Sign in / Sign up

Export Citation Format

Share Document