scholarly journals Dome-shaped functional response induced by nutrient imbalance of the prey

2011 ◽  
Vol 7 (4) ◽  
pp. 517-520 ◽  
Author(s):  
Berith B. Bressendorff ◽  
Søren Toft

Nutritional ecological theory predicts that predators should adjust prey capture and consumption rates depending on the prey's nutritional composition. This would affect the predator's functional response, at least at high prey densities, i.e. near predator satiation. Using a simple fruitfly-wolf spider laboratory system in Petri dishes, we found that functional responses changed from day to day over a 7 day period. After 1 to 2 days of feeding, dome-shaped functional responses (i.e. reduced predation at highest prey densities) appeared in spiders fed nutritionally imbalanced prey, compared with steadily increasing or asymptotic functional responses with nutritionally near-optimal prey. Later again (days 5–7), the difference disappeared as the level of the functional response was reduced in both treatments. Experiments with adult females in spring and subadult spiders in autumn revealed opposite patterns: a dome-shaped response with high-lipid prey for reproductive females, for which protein-rich prey are optimal, and a dome-shaped (or simply reduced) response with high-protein prey for pre-winter subadults, for which high-lipid flies are the optimal prey. Our results have implications for predation theory and models of biological control that have, so far, neglected nutritional aspects; in particular, the dynamic nutritional state of the predators should be incorporated.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasir Islam ◽  
Farhan Mahmood Shah ◽  
Xu Rubing ◽  
Muhammad Razaq ◽  
Miao Yabo ◽  
...  

AbstractIn the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.


Parasitology ◽  
2010 ◽  
Vol 137 (6) ◽  
pp. 1027-1038 ◽  
Author(s):  
ANDY FENTON ◽  
SARAH E. PERKINS

SUMMARYPredator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alternative forms are more likely, resulting in very different predictions, ranging from parasite exclusion to chronic infection. By extending this framework to consider multiple infections we show that combinations of parasites eliciting different functional responses greatly affect community stability. Indeed, some parasites may stabilize other species that would be unstable if infecting alone. Therefore hosts' immune systems may have adapted to tolerate certain parasites, rather than clear them and risk erratic parasite dynamics. We urge for more detailed empirical information relating immune activity to parasite load to enable better predictions of the dynamic consequences of immune-mediated interspecific interactions within parasite communities.


2001 ◽  
Vol 58 (2) ◽  
pp. 386-393 ◽  
Author(s):  
John A Sweka ◽  
Kyle J Hartman

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the influence of turbidity on mean daily consumption and specific growth rates. Treatment turbidity levels ranged from clear (<3.0 nephelometric turbidity units (NTU)) to very turbid water (> 40 NTU). Observed mean daily specific consumption rates were standardized to the mean weight of all brook trout tested. Turbidity had no significant effect on mean daily consumption, but specific growth rates decreased significantly as turbidity increased. Brook trout in turbid water became more active and switched foraging strategies from drift feeding to active searching. This switch was energetically costly and resulted in lower specific growth rates in turbid water as compared with clear water. Bioenergetics simulations were run to compare observed growth with that predicted by the model. Observed growth values fell below those predicted by the model and the difference increased as turbidity increased. Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish, can have implications for the accuracy of predicted growth by bioenergetics models.


2001 ◽  
Vol 58 (10) ◽  
pp. 1909-1923 ◽  
Author(s):  
Outi Heikinheimo

During the past 20 years, there have been prolonged vendace (Coregonus albula) recessions in several Finnish lakes. Hypotheses have been proposed that predation by brown trout (Salmo trutta m. lacustris) or perch (Perca fluviatilis) on young-of-the-year vendace could prevent the recovery of the vendace stocks from a low-density state. In this study, dynamic modelling was applied to examine the effect of predation, assuming a dome-shaped spawning stock–recruitment relationship for vendace, type II or III functional responses to predation by brown trout and perch, and a constant rate of fishing. The results showed that the form of the functional response is crucial in determining the significance of the predation on vendace stocks that have a steep dome-shaped stock–recruitment relationship. In all cases, however, predation by perch had more effect than that by brown trout, probably due to perch occupying the pelagic zone when the vendace stock is sparse. This may make the mortality of vendace increase with decreasing population density (depensatory mortality) at certain density levels.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Can-Yun Huang ◽  
Min Zhao ◽  
Hai-Feng Huo

A stage-structured three-species predator-prey model with Beddington-DeAngelis and Holling II functional response is introduced. Based on the comparison theorem, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. An example is also presented to illustrate our main results.


Author(s):  
Azadeh Farazmand ◽  
Masood Amir-Maafi

Abstract In this research, functional responses of Amblyseius swirskii Athias-Henriot preying on different Tetranychus urticae Koch nymphal densities (2, 4, 8, 16, 32, 64, and 128) were studied at eight constant temperatures (15, 20, 25, 27.5, 30, 32.5, 35 and 37.5°C) in a circular Petri dish (3-cm diameter × 1-cm height) under lab conditions. At all temperatures, the logistic regression showed a type II functional response. A nonlinear relationship was found between temperature and attack rate and the reciprocal of handling time. The reciprocal of handling time decreased exponentially with increasing temperature. In contrast, the attack rate grew rapidly with increasing temperatures up to an optimum, showing a decreasing trend at higher temperatures. In order to quantify the functional response of A. swirskii over a broad range of temperatures and to gain a better estimation of attack rate and handling time, a temperature-settled functional response equation was suited to our data. Our model showed that the number of prey consumed increased with rising prey density. Also, the predation rates increased with increasing temperatures but decreased at extremely high temperatures. Based on our model, the predation rate begins at the lower temperature threshold (11.73°C) and reaches its peak at upper temperature threshold (29.43°C). The coefficient of determination (R2) of the random predator model was 0.99 for all temperatures. The capability of A. swirskii to search and consume T. urticae over a wide range of temperatures makes it a good agent for natural control of T. urticae in greenhouses.


2016 ◽  
Vol 75 (s1) ◽  
Author(s):  
Alma R. Núñez-Ortiz ◽  
Sarma Nandini ◽  
S.S.S. Nandini

<p>Freshwater turbellarians, despite their mainly benthic habits, interact with pelagic communities of rotifers and cladocerans. However, very little is known about their demographic characteristics, food preference and functional response. To fill that gap we studied one of the most widely spread species, <em>Stenostomum leucops</em>.  We conducted population growth experiments using abundant food (several rotifer and cladocerans species). To evaluate possible impact of <em>S. leucops</em> on planktonic communities, we conducted prey preference experiments at two temperatures: 18 and 23°C. The number of rotifers and cladocerans consumed was calculated by the difference between the initial and final density. We found that diets supplemented with fresh algae achieved higher <em>S. leucops</em> densities than those with detritus supplements in their diets. In the case of animal diets, <em>Euchlanis dilatata</em> allowed <em>S. leucops</em> reach higher densities than the other zooplankton species; <em>E. dilatata</em> was positively selected for in the selectivity study at both 18 and 23°C.  <em>Stenostomum leucops</em> showed a type II functional response on rotifers and the cladoceran <em>Alona glabra</em>. Our results suggest that <em>S. leucops</em> select their prey according to their vulnerability using different mechanisms, which optimize their food intake.</p>


2017 ◽  
Author(s):  
Benjamin Rosenbaum ◽  
Bjoern C. Rall

The feeding functional response is one of the most widespread mathematical frameworks in Ecology, Marine Biology, Freshwater Biology, Microbiology and related scientific fields describing the resource-dependent uptake of a consumer. Since the exact knowledge of its parameters is crucial in order to predict, for example, the efficiency of biocontrol agents, population dynamics, food web structure and subsequently biodiversity, a trustful parameter estimation is of utmost importance for scientists using this framework. Classical approaches for estimating functional response parameters lack flexibility and can often only serve as approximation for a correct parameter estimation. Moreover, they do not allow to incorporate side effects such as resource growth or background mortality. Both call for a new method to be established solving these problems. Here, we combined ordinary differential equation models (ODE models), that were numerically solved using computer simulations, with an iterative maximum likelihood fitting approach. We compared our method to classical approaches of fitting functional responses, using data both with and without additional resource growth and mortality. We found that for classical functional response models, like the often used type II and type III functional response, the established fitting methods are reliable. However, using more complex and flexible functional responses, our new established method outperforms the traditional methods. Additionally, only our method allows to analyze experiments correctly when resources experience growth or background mortality. Our method will enable researchers from different scientific fields that are measuring functional responses to estimate parameters correctly. These estimates will enable community ecologists to parameterize their models more precisely, allowing for a deeper understanding of complex ecological systems, and will increase the quality of ecological prediction models.


Author(s):  
John P. DeLong

Predator-prey interactions form an essential part of ecological communities, determining the flow of energy from autotrophs to top predators. The rate of predation is a key regulator of that energy flow, and that rate is determined by the functional response. Functional responses themselves are emergent ecological phenomena – they reflect morphology, behavior, and physiology of both predator and prey and are both outcomes of evolution and the source of additional evolution. The functional response is thus a concept that connects many aspects of biology from behavioral ecology to eco-evolutionary dynamics to food webs, and as a result, the functional response is the key to an integrative science of predatory ecology. In this book, I provide a synthesis of research on functional responses, starting with the basics. I then break the functional response down into foraging components and connect these to the traits and behaviors that connect species in food webs. I conclude that contrary to appearances, we know very little about functional responses, and additional work is necessary for us to understand how environmental change and management will impact ecological systems


2017 ◽  
Vol 66 (2) ◽  
Author(s):  
Víctor Ernesto Tello Mercado ◽  
Miguel Esteban Zarzar Maza ◽  
Angélica María Suarez Pantoja

The functional response of adult females of predatory mite Cydnodromus picanus Ragusa (Acari: Phytoseiidae) was evaluated at different egg densities (5, 10, 20, 30, 40, 50, 60, 70, 80, 100 and 150 eggs per predator) of Tetranychus urticae Koch (Acari: Tetranychidae), which had 16, 42 and 65 h since oviposition. The experimental design was in a completely randomized blocks with five replicates per treatment. The environmental conditions of the trials were 25±2°C temperature, 50±2% of relative humidity and a photoperiod of 16:8 hours (light: dark). The average consumption rates for the three kinds of prey showed no significant differences (p>0.05) being 20.56±1.02, 18.59±0.79 and 18.38±0.94 prey/predator for eggs of 16, 42 and 65 h age, respectively. Using a logistic regression, a type II functional response on C. picanus females for the three kinds of eggs was determined. The values of response parameters for C. picanus females were as follows: Attack rate (a): 0.055±0.006, 0.076±0.009 and 0.073±0.016; Handling time (Th): 0.684±0.036, 0.894±0.034 and 0.898±0.062; for eggs of 16, 42 and 65 h age, respectively. These values are within the range of variation for different species of phytoseiids. These results suggest that C. picanus could effectively regulate populations of T. urticae in the field.  


Sign in / Sign up

Export Citation Format

Share Document