The Croonian Lecture, 1991. Genostasis and the limits to evolution

1991 ◽  
Vol 333 (1267) ◽  
pp. 289-305 ◽  

The Darwinian explanation for evolution is that it is the outcome of the interaction between genetic variation and natural selection. There is now good evidence for both the existence of genetic variation and the occurrence of natural selection, the latter potentially at high intensities. The outcome should be rapid evolutionary change; yet in practice very little change is found. Most species are very stable, and in situations where evolution is observed in one species often none is found in others despite equivalent opportunity. Evolutionary failure is commonplace. Despite the occurrence of high levels of protein polymorphism, there is good evidence that the supply of variation making a major contribution to fitness is very limited. As a result it is argued that lack of evolution in most species may be due more to lack of appropriate variability than to other causes: a condition for which the term ‘ genostasis ’ is proposed. In those situations where appropriate genetic variation is available for one reason or another, evolution is found to be very rapid. There are good theoretical and practical reasons for more attention being paid to the mechanisms of supply of new variation and to those situations where evolution appears not to be taking place.

2008 ◽  
Vol 5 (1) ◽  
pp. 44-46 ◽  
Author(s):  
John F.Y Brookfield

The concept of ‘evolvability’ is increasingly coming to dominate considerations of evolutionary change. There are, however, a number of different interpretations that have been put on the idea of evolvability, differing in the time scales over which the concept is applied. For some, evolvability characterizes the potential for future adaptive mutation and evolution. Others use evolvability to capture the nature of genetic variation as it exists in populations, particularly in terms of the genetic covariances between traits. In the latter use of the term, the applicability of the idea of evolvability as a measure of population's capacity to respond to natural selection rests on one, but not the only, view of the way in which we should envisage the process of natural selection. Perhaps the most potentially confusing aspects of the concept of evolvability are seen in the relationship between evolvability and robustness.


2012 ◽  
Vol 279 (1749) ◽  
pp. 5024-5028 ◽  
Author(s):  
Jacek Radwan ◽  
Wiesław Babik

The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.


1992 ◽  
Vol 6 ◽  
pp. 292-292
Author(s):  
Robert Titus

Species populations commonly carry a great deal of genetic variation which is not expressed in individual phenotypes. Cryptic variation can be carried in recessive alleles, in cases of heterosis, or where modifier genes inhibit expression of the hidden trait. Other genetic and ecological factors also allow cryptic variation. Stabilizing selection prevents the expression of hidden traits; normalizing selection weeds out the deviants and canalizing selection suppresses their traits. Together the two keep the species near the top of the adaptive peak. Cryptic variation balances a species' need to be well-adapted to its environment and also for it to maintain a reserve of variation for potential environmental change. Expression of cryptic traits is rare and is usually associated with times of greatly reduced natural selection and rapid population growth, when the lower slopes of the adaptive peak are exposed.A possible example of the manifestation of cryptic traits occurs within the lower Trentonian Rafinesquina lineage of New York State. The two most commonly reported species of the genus have been reappraised in terms of cryptic variation. Extensive collections of Rafinesquina “lennoxensis” reveal far more intergrading morphotypes than had hitherto been recognized. The form which Salmon (1942) described is broadly U-shaped with sulcate margins. It grades into very convex forms as well as sharply-defined or convexly geniculate types. Of great importance, all forms grade into the flat, U-shaped, alate R. trentonensis, which is, by far, the most common and widespread lower Trentonian member of the genus. The R. “lennoxensis” assemblage has a very narrow biostratigraphy, being confined to a few locations in the upper Napanee Limestone. This places it in a quiet, protected, low stress, lagoonal setting behind the barrier shoal facies of the Kings Falls Limestone.The R. “lennoxensis” assemblage does not constitute a natural biologic species; it is reinterpreted as an assemblage of phenodeviants occupying a low stress, low natural selection lagoon facies. All such forms should be included within R. trentonensis. Given the evolutionary plasticity of this genus, extensive cryptic variation is not surprising.


Botany ◽  
2016 ◽  
Vol 94 (3) ◽  
pp. 201-213
Author(s):  
Anselmo Nogueira ◽  
Pedro J. Rey ◽  
Julio M. Alcántara ◽  
Lúcia G. Lohmann

Extra-floral nectaries (EFNs) are thought to represent protective adaptations against herbivory, but studies on the evolutionary ecology of EFNs have seldom been conducted. Here we investigate the patterns of natural selection and genetic variation in EFN traits in two wild populations of Anemopaegma album Mart. ex DC. (Bignoniaceae) that have been previously described as contrasting EFN – ant adapted localities in the Neotropical savanna (Cristália and Grão Mogol). In each population, four EFN descriptors, foliar damage, and reproductive success variables were measured per plant (100–120 plants per population). To estimate the heritability of EFN traits, we crossed reproductive plants in the field, and grew offspring plants in a common garden. The results showed that ant assemblages differed between populations, as did the range of foliar herbivory. Genetic variation and positive phenotypic selection in EFN abundance were only detected in the Cristália population, in which plants with more EFNs were more likely to reproduce. An evaluation of putative causal links conducted by path analysis corroborated the existence of phenotypic selection on EFNs, which was mediated by the herbivory process in the Cristália population. While EFNs could be currently under selection in Cristália, it is possible that past selection may have driven EFN traits to become locally adapted to the local ant assemblage in the Grão Mogol population.


2009 ◽  
Vol 364 (1523) ◽  
pp. 1483-1489 ◽  
Author(s):  
F. Pelletier ◽  
D. Garant ◽  
A.P. Hendry

Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes.


2009 ◽  
Vol 41 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Henrique Teotónio ◽  
Ivo M Chelo ◽  
Martina Bradić ◽  
Michael R Rose ◽  
Anthony D Long

Author(s):  
Stephen J. Simpson ◽  
David Raubenheimer

This chapter studies intake and growth targets. For clarity, earlier chapters have treated intake and growth targets as static points integrated across a particular period in the life of an animal. In reality they are, of course, not static but rather trajectories that move in time. In the short term, the requirements of the animal change as environmental circumstances impose differing demands for nutrients and energy. At a somewhat longer timescale, targets move as the animal passes through the various stages of its life, from early growth and development to maturity, reproduction, and senescence. On an even longer timescale, nutritional traits are subject to natural selection and move as species evolve to exploit new or changing nutritional environments and to adopt differing life-history strategies. Presaging such evolutionary change in gene frequencies within populations are epigenetic effects, whereby the nutritional experiences of parents influence the behavior and metabolism of their offspring without requiring changes in gene frequencies.


Author(s):  
David F. Bjorklund

The high level of plasticity shown by children today was also a feature of our forechildren. Experiences early in life can modify the morphology or behavior of an animal and result in new pressures that can be the focus of natural selection. Behavior, in fact, takes the lead in evolution, because it is more susceptible to change than morphology or genes. Most of the changes early in development, at least for mammals, were accomplished in the presence of mothers. To a significant extent, mothers are the environment for young mammals, making mothers the environment for evolutionary change. Significant behavioral changes in evolution are most likely to occur in large-brained animals, who are better able to deal with novel environments through innovation and social transmission of information than smaller-brained animals.


2020 ◽  
Vol 110 (2) ◽  
pp. 517-525 ◽  
Author(s):  
Miguel A. Redondo ◽  
Jan Stenlid ◽  
Jonàs Oliva

Predicting whether naïve tree populations have the potential to adapt to exotic pathogens is necessary owing to the increasing rate of invasions. Adaptation may occur as a result of natural selection when heritable variation in terms of susceptibility exists in the naïve population. We searched for signs of selection on black alder (Alnus glutinosa) stands growing on riverbanks invaded by two pathogens differing in aggressiveness, namely, Phytophthora uniformis (PU) and Phytophthora × alni (PA). We compared the survival and heritability measures from 72 families originating from six invaded and uninvaded (naïve) sites by performing in vitro inoculations. The results from the inoculations were used to assess the relative contribution of host genetic variation on natural selection. We found putative signs of natural selection on alder exerted by PU but not by PA. For PU, we found a higher survival in families originating from invaded sites compared with uninvaded sites. The narrow sense heritability of susceptibility to PU of uninvaded populations was significantly higher than to PA. Simulated data supported the role of heritable genetic variation on natural selection and discarded a high aggressiveness of PA decreasing the transmission rate as an alternative hypothesis for a slow natural selection. Our findings expand on previous attempts of using heritability as a predictor for the likelihood of natural adaptation of naïve tree populations to invasive pathogens. Measures of genetic variation can be useful for risk assessment purposes or when managing Phytophthora invasions.


Sign in / Sign up

Export Citation Format

Share Document