scholarly journals Genetic Variation Explains Changes in Susceptibility in a Naïve Host Against an Invasive Forest Pathogen: The Case of Alder and the Phytophthora alni Complex

2020 ◽  
Vol 110 (2) ◽  
pp. 517-525 ◽  
Author(s):  
Miguel A. Redondo ◽  
Jan Stenlid ◽  
Jonàs Oliva

Predicting whether naïve tree populations have the potential to adapt to exotic pathogens is necessary owing to the increasing rate of invasions. Adaptation may occur as a result of natural selection when heritable variation in terms of susceptibility exists in the naïve population. We searched for signs of selection on black alder (Alnus glutinosa) stands growing on riverbanks invaded by two pathogens differing in aggressiveness, namely, Phytophthora uniformis (PU) and Phytophthora × alni (PA). We compared the survival and heritability measures from 72 families originating from six invaded and uninvaded (naïve) sites by performing in vitro inoculations. The results from the inoculations were used to assess the relative contribution of host genetic variation on natural selection. We found putative signs of natural selection on alder exerted by PU but not by PA. For PU, we found a higher survival in families originating from invaded sites compared with uninvaded sites. The narrow sense heritability of susceptibility to PU of uninvaded populations was significantly higher than to PA. Simulated data supported the role of heritable genetic variation on natural selection and discarded a high aggressiveness of PA decreasing the transmission rate as an alternative hypothesis for a slow natural selection. Our findings expand on previous attempts of using heritability as a predictor for the likelihood of natural adaptation of naïve tree populations to invasive pathogens. Measures of genetic variation can be useful for risk assessment purposes or when managing Phytophthora invasions.

2017 ◽  
Author(s):  
Katherine Dziedzic ◽  
Holland Elder ◽  
Hannah F Tavalire ◽  
Eli Meyer

Reef-building corals are highly sensitive to rising ocean temperatures, and substantial adaptation will be required for corals and the ecosystems they support to persist in changing ocean conditions. Genetic variation that might support adaptive responses has been measured in larval stages of some corals, but these estimates remain unavailable for adult corals and the functional basis of this variation remains unclear. In this study, we focused on the potential for adaptation in Orbicella faveolata, a dominant reef-builder in the Caribbean. We conducted thermal stress experiments using corals collected from natural populations in Bocas del Toro, Panama, and used multilocus SNP genotypes to estimate genetic relatedness among samples. This allowed us to estimate narrow-sense heritability of variation in bleaching responses, revealing that variation in these responses was highly heritable (h2=0.58). This suggests substantial potential for adaptive responses to warming by natural populations of O. faveolata in this region. We further investigated the functional basis for this variation using genomic and transcriptomic approaches. We used a publicly available genetic linkage map and genome assembly to map markers associated with bleaching responses, identifying twelve markers associated with variation in bleaching responses. We also profiled gene expression in corals with contrasting bleaching phenotypes, uncovering substantial differences in transcriptional stress responses between heat-tolerant and heat-susceptible corals. Together, our findings contribute to the growing body of evidence that natural populations of corals possess genetic variation in thermal stress responses that may potentially support adaptive responses to rising ocean temperatures.


Author(s):  
Pierre Darme ◽  
Jérémy Spalenka ◽  
Jane Hubert ◽  
Sandie Escotte-binet ◽  
Laurent Debelle ◽  
...  

Toxoplasmosis is a worldwide parasitosis that affects one-third of the population. People at risk, such as immunocompromised patients (AIDS, chemotherapy treatment) or fetuses (maternal-fetal transmission) can develop severe forms of the disease. The antiparasitic activity of extracts of different polarities ( n -heptane, MeOH, MeOH/H 2 O) of ten tree species endemics to temperate regions was investigated against Toxoplasma gondii infection in vitro . Our results showed that the n -heptane extract of the black alder ( Alnus glutinosa ) exhibited a significant antiparasitic activity without any cytotoxicity at the tested concentrations, with an IC 50 of up to 25.08 μg/mL and a selectivity index higher than 3.99. The chemical profiling of this extract revealed triterpenes as major constituents. The ability of commercially available triterpene (betulin, betulinic acid, and betulone) to inhibit the growth of T. gondii was evaluated and showed growth inhibition rates of 44%, 49%, and 99% at 10 μM, respectively.


2014 ◽  
Vol 63 (1-6) ◽  
pp. 222-229
Author(s):  
I. Zaspel ◽  
G. Naujoks ◽  
L. Krüger ◽  
L. H. Pham

Summary This study demonstrated the promotion of the ability of black alder clones to resist to Phytophthora alni ssp. alni with the cyclolipopeptide (CLP)-producing Pseudomonas veronii isolate PAZ1. The bacterial strain, isolated from an association with P. alni ssp. alni, and characterised by its production of the secondary metabolites viscosin and massetolides, possessed inhibitory ability against isolates of the oomycete tree pathogen in vitro. In plant experiments with alder clones in vitro, the treatment with living bacteria showed an earlier start of the rooting process and a promoted root and shoot growth. Compared to non-treated plants, the root system was improved by longer primary roots with abundant secondary roots. The treatment with a methanol extract prepared from strain PAZ1 had no comparable effect. After protective application of strain PAZ1 14 days before the pathogen, the disease incidence was lower and biomass production was higher than in the pathogen control. These results were completed by a greenhouse experiment for a period of 13 months. Bacteria application prior to the pathogen led to reduced Phytophthora incidence at two of five clones in the combined treatment.


2018 ◽  
Vol 39 (3) ◽  
pp. 427-439 ◽  
Author(s):  
José A Ramírez-Valiente ◽  
Julie R Etterson ◽  
Nicholas J Deacon ◽  
Jeannine Cavender-Bares

Abstract Heritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect. for a suite of traits related to resource use and drought resistance. We tested whether quantitative genetic variation differed across traits, populations and watering treatments. We also tested potential evolutionary factors that might have shaped such a pattern: selection by climate and genetic drift. We measured 15 functional traits on 1322 1-year-old seedlings of 84 maternal half-sib families originating from five populations growing under two watering treatments in a greenhouse. We estimated the additive genetic variance, coefficient of additive genetic variation and narrow-sense heritability for each combination of traits, populations and treatments. In addition, we genotyped a total of 119 individuals (with at least 20 individuals per population) using nuclear microsatellites to estimate genetic diversity and population genetic structure. Our results showed that gas exchange traits and growth exhibited strikingly high quantitative genetic variation compared with traits related to leaf morphology, anatomy and photochemistry. Quantitative genetic variation differed between populations even at geographical scales as small as a few kilometers. Climate was associated with quantitative genetic variation, but only weakly. Genetic structure and diversity in neutral markers did not relate to coefficient of additive genetic variation. Our study demonstrates that quantitative genetic variation is not homogeneous across traits and populations of Q. oleoides. More importantly, our findings suggest that predictions about potential responses of species to climate change need to consider population-specific evolutionary characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory R. Keele ◽  
Jeremy W. Prokop ◽  
Hong He ◽  
Katie Holl ◽  
John Littrell ◽  
...  

AbstractChronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.


Sign in / Sign up

Export Citation Format

Share Document