scholarly journals Functional mapping in the human brain using high magnetic fields

1999 ◽  
Vol 354 (1387) ◽  
pp. 1195-1213 ◽  
Author(s):  
Kamil Ugurbil ◽  
Hu Xiaoping ◽  
Chen Wei ◽  
Xiao-Hong Zhu ◽  
Seong-Gi Kim ◽  
...  

An avidly pursued new dimension in magnetic resonance imaging (MRI) research is the acquisition of physiological and biochemical information non–invasively using the nuclear spins of the water molecules in the human body. In this trial, a recent and unique accomplishment was the introduction of the ability to map human brain function non–invasively. Today, functional images with subcentimetre resolution of the entire human brain can be generated in single subjects and in data acquisition times of several minutes using 1.5 tesla (T) MRI scanners that are often used in hospitals for clinical purposes. However, there have been accomplishments beyond this type of imaging using significantly higher magnetic fields such as 4 T. Efforts for developing high magnetic field human brain imaging and functional mapping using MRI (fMRI) were undertaken at about the same time. It has been demonstrated that high magnetic fields result in improved contrast and, more importantly, in elevated sensitivity to capillary level changes coupled to neuronal activity in the blood oxygenation level dependent (BOLD) contrast mechanism used in fMRI. These advantages have been used to generate, for example, high resolution functional maps of ocular dominance columns, retinotopy within the small lateral geniculate nucleus, true single–trial fMRI and early negative signal changes in the temporal evolution of the BOLD signal. So far these have not been duplicated or have been observed as significantly weaker effects at much lower field strengths. Some of these high–field advantages and accomplishments are reviewed in this paper.

1999 ◽  
Vol 354 (1392) ◽  
pp. 2084-2084 ◽  
Author(s):  
K. Uğurbil ◽  
X. H. Wei Chen ◽  
X.-H. Zhu ◽  
S.-G. Kim ◽  
A. Georgopoulos

2020 ◽  
Author(s):  
Jelle A. van Dijk ◽  
Alessio Fracasso ◽  
Natalia Petridou ◽  
Serge O. Dumoulin

AbstractAdvancements in ultra-high field (7 T and higher) magnetic resonance imaging (MRI) scanners have made it possible to investigate both the structure and function of the human brain at a sub-millimeter scale. As neuronal feedforward and feedback information arrives in different layers, sub-millimeter functional MRI has the potential to uncover information processing between cortical micro-circuits across cortical depth, i.e. laminar fMRI. For nearly all conventional fMRI analyses, the main assumption is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal adheres to the principles of linear systems theory. For laminar fMRI, however, directional blood pooling across cortical depth stemming from the anatomy of the cortical vasculature, potentially violates these linear system assumptions, thereby complicating analysis and interpretation. Here we assess whether the temporal additivity requirement of linear systems theory holds for laminar fMRI. We measured responses elicited by viewing stimuli presented for different durations and evaluated how well the responses to shorter durations predicted those elicited by longer durations. We find that BOLD response predictions are consistently good predictors for observed responses, across all cortical depths, and in all measured visual field maps (V1, V2, and V3). Our results suggest that the temporal additivity assumption for linear systems theory holds for laminar fMRI. We thus show that the temporal additivity assumption holds across cortical depth for sub-millimeter gradient-echo BOLD fMRI in early visual cortex.


2021 ◽  
Author(s):  
Wiktor Olszowy ◽  
Yujian Diao ◽  
Ileana O Jelescu

Functional Magnetic Resonance Imaging (fMRI) is an essential method to measure brain activity non-invasively. While fMRI almost systematically relies on the blood oxygenation level-dependent (BOLD) contrast, there is an increasing interest in alternative methods that would not rely on neurovascular coupling. A promising but controversial such alternative is diffusion fMRI (dfMRI), which relies instead on dynamic fluctuations in apparent diffusion coefficient (ADC) due to microstructural changes underlying neuronal activity. However, it is unclear whether genuine dfMRI contrast, distinct from BOLD contamination, can be detected in the human brain in physiological conditions. Here, we present the first dfMRI study in humans attempting to minimize all BOLD contamination sources and comparing functional responses at two field strengths (3T and 7T), both for task and resting-state (RS) fMRI. Our study benefits from unprecedented high spatiotemporal resolution and harnesses novel denoising strategies. We report task-induced decrease in ADC with temporal and spatial features distinct from the BOLD response and yielding more specific activation maps. Furthermore, we report dfMRI RS connectivity which, compared to its BOLD counterpart, is essentially free from physiological artifacts and preserves positive correlations but preferentially suppresses anti-correlations, which are likely of vascular origin. A careful acquisition and processing design thus enable the detection of genuine dfMRI contrast on clinical MRI systems. As opposed to BOLD, diffusion functional contrast could be particularly well suited for low-field MRI.


2018 ◽  
Vol 46 (4) ◽  
pp. 1391-1403 ◽  
Author(s):  
Qidong Wang ◽  
Chuangen Guo ◽  
Lan Zhang ◽  
Rui Zhang ◽  
Zhaoming Wang ◽  
...  

Objective To investigate changes in renal oxygenation levels by blood-oxygenation-level dependent (BOLD)-magnetic resonance imaging (MRI), and to evaluate BOLD-MRI for detecting early diabetic renal injury. Methods Seventy-five rats, with unilateral nephrectomy, were randomly divided into streptozotocin-induced diabetes mellitus (DM, n = 65) and normal control (NC, n = 10) groups. BOLD-MRI scans were performed at baseline (both groups) and at 3, 7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 days (DM only). Renal cortical (C) and medullary (M) R2* signals were measured and R2* medulla/cortex ratio (MCR) was calculated. Results DM-group CR2* and MR2* values were significantly higher than NC values following diabetes induction. R2* values increased gradually and peaked at day 35 (CR2*, 33.95 ± 0.34 s–1; MR2*, 43.79 ± 1.46 s–1), then dropped gradually (CR2*, 33.17 ± 0.69 s–1; MR2*, 41.61 ± 0.95 s–1 at day 70). DM-group MCR rose gradually from 1.12 to 1.32 at day 42, then decreased to 1.25 by day 70. Conclusions BOLD-MRI can be used to non-invasively evaluate renal hypoxia and early diabetic renal injury in diabetic rats. MCR may be adopted to reflect dynamic changes in renal hypoxia.


2001 ◽  
Vol 46 (6) ◽  
pp. 1049-1053 ◽  
Author(s):  
Belinda S.Y. Li ◽  
Juleiga Regal ◽  
Oded Gonen

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Renata F. Leoni ◽  
Kelley C. Mazzetto-Betti ◽  
Afonso C. Silva ◽  
Antonio C. dos Santos ◽  
Draulio B. de Araujo ◽  
...  

Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.


2013 ◽  
Vol 33 (12) ◽  
pp. 1857-1863 ◽  
Author(s):  
Michael A Germuska ◽  
James A Meakin ◽  
Daniel P Bulte

Vessel size imaging (VSI) is a magnetic resonance imaging (MRI) technique that aims to provide quantitative measurements of tissue microvasculature. An emerging variation of this technique uses the blood oxygenation level-dependent (BOLD) effect as the source of the imaging contrast. Gas challenges have the advantage over contrast injection techniques in that they are noninvasive and easily repeatable because of the fast washout of the contrast. However, initial results from BOLD-VSI studies are somewhat contradictory, with substantially different estimates of the mean vessel radius. Owing to BOLD-VSI being an emerging technique, there is not yet a standard processing methodology, and different techniques have been used to calculate the mean vessel radius and reject uncertain estimates. In addition, the acquisition methodology and signal modeling vary from group to group. Owing to these differences, it is difficult to determine the source of this variation. Here we use computer modeling to assess the impact of noise on the accuracy and precision of different BOLD-VSI calculations. Our results show both potential overestimates and underestimates of the mean vessel radius, which is confirmed with a validation study at 3T.


Sign in / Sign up

Export Citation Format

Share Document