scholarly journals BOLD MRI to evaluate early development of renal injury in a rat model of diabetes

2018 ◽  
Vol 46 (4) ◽  
pp. 1391-1403 ◽  
Author(s):  
Qidong Wang ◽  
Chuangen Guo ◽  
Lan Zhang ◽  
Rui Zhang ◽  
Zhaoming Wang ◽  
...  

Objective To investigate changes in renal oxygenation levels by blood-oxygenation-level dependent (BOLD)-magnetic resonance imaging (MRI), and to evaluate BOLD-MRI for detecting early diabetic renal injury. Methods Seventy-five rats, with unilateral nephrectomy, were randomly divided into streptozotocin-induced diabetes mellitus (DM, n = 65) and normal control (NC, n = 10) groups. BOLD-MRI scans were performed at baseline (both groups) and at 3, 7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 days (DM only). Renal cortical (C) and medullary (M) R2* signals were measured and R2* medulla/cortex ratio (MCR) was calculated. Results DM-group CR2* and MR2* values were significantly higher than NC values following diabetes induction. R2* values increased gradually and peaked at day 35 (CR2*, 33.95 ± 0.34 s–1; MR2*, 43.79 ± 1.46 s–1), then dropped gradually (CR2*, 33.17 ± 0.69 s–1; MR2*, 41.61 ± 0.95 s–1 at day 70). DM-group MCR rose gradually from 1.12 to 1.32 at day 42, then decreased to 1.25 by day 70. Conclusions BOLD-MRI can be used to non-invasively evaluate renal hypoxia and early diabetic renal injury in diabetic rats. MCR may be adopted to reflect dynamic changes in renal hypoxia.

2020 ◽  
Author(s):  
Jelle A. van Dijk ◽  
Alessio Fracasso ◽  
Natalia Petridou ◽  
Serge O. Dumoulin

AbstractAdvancements in ultra-high field (7 T and higher) magnetic resonance imaging (MRI) scanners have made it possible to investigate both the structure and function of the human brain at a sub-millimeter scale. As neuronal feedforward and feedback information arrives in different layers, sub-millimeter functional MRI has the potential to uncover information processing between cortical micro-circuits across cortical depth, i.e. laminar fMRI. For nearly all conventional fMRI analyses, the main assumption is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal adheres to the principles of linear systems theory. For laminar fMRI, however, directional blood pooling across cortical depth stemming from the anatomy of the cortical vasculature, potentially violates these linear system assumptions, thereby complicating analysis and interpretation. Here we assess whether the temporal additivity requirement of linear systems theory holds for laminar fMRI. We measured responses elicited by viewing stimuli presented for different durations and evaluated how well the responses to shorter durations predicted those elicited by longer durations. We find that BOLD response predictions are consistently good predictors for observed responses, across all cortical depths, and in all measured visual field maps (V1, V2, and V3). Our results suggest that the temporal additivity assumption for linear systems theory holds for laminar fMRI. We thus show that the temporal additivity assumption holds across cortical depth for sub-millimeter gradient-echo BOLD fMRI in early visual cortex.


2018 ◽  
Vol 39 (11) ◽  
pp. 2132-2143 ◽  
Author(s):  
Jens Göttler ◽  
Stephan Kaczmarz ◽  
Michael Kallmayer ◽  
Isabel Wustrow ◽  
Hans-Henning Eckstein ◽  
...  

Oxygen extraction (OEF), oxidative metabolism (CMRO2), and blood flow (CBF) in the brain, as well as the coupling between CMRO2 and CBF due to cerebral autoregulation are fundamental to brain's health. We used a clinically feasible MRI protocol to assess impairments of these parameters in the perfusion territories of stenosed carotid arteries. Twenty-nine patients with unilateral high-grade carotid stenosis and thirty age-matched healthy controls underwent multi-modal MRI scans. Pseudo-continuous arterial spin labeling (pCASL) yielded absolute CBF, whereas multi-parametric quantitative blood oxygenation level dependent (mqBOLD) modeling allowed imaging of relative OEF and CMRO2. Both CBF and CMRO2 were significantly reduced in the stenosed territory compared to the contralateral side, while OEF was evenly distributed across both hemispheres similarly in patients and controls. The CMRO2-CBF coupling was significantly different between both hemispheres in patients, i.e. significant interhemispheric flow-metabolism uncoupling was observed in patients compared to controls. Given that CBF and CMRO2 are intimately linked to brain function in health and disease, the proposed easily applicable MRI protocol of pCASL and mqBOLD imaging might serve as a valuable tool for early diagnosis of potentially harmful cerebral hemodynamic and metabolic states with the final aim to select clinically asymptomatic patients who would benefit from carotid revascularization therapy.


2015 ◽  
Vol 35 (12) ◽  
pp. 2032-2042 ◽  
Author(s):  
Carlos C Faraco ◽  
Megan K Strother ◽  
Jeroen CW Siero ◽  
Daniel F Arteaga ◽  
Allison O Scott ◽  
...  

Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2∗, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3T; TE/TR = 35/2,000 ms; spatial resolution = 3×3×3.5 mm3) in healthy volunteers ( n = 12; age = 29±4.1 years) breathing (i) room air (RA), (ii) normocapnic-hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic-normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic-hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R∗2, and tissue-water R∗2. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA = 0.011 ± 0.007; HC-NO/RA = 0.014±0.004; HC-HO/HO = 0.020±0.008; and HC-HO/RA = 0.035 ±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R∗2 are altered during hyperoxia.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Theodoros D Karamitsos ◽  
Alejandro Recio-Mayoral ◽  
Jayanth R Arnold ◽  
Lucia Leccisotti ◽  
Paul Bhamra-Ariza ◽  
...  

Blood oxygenation level-dependent (BOLD) MRI clinical studies at 1.5 Tesla (T) have been principally limited by low signal to noise. We sought to apply this method at 3T in patients with coronary artery disease (CAD) and normal volunteers, and validated it against perfusion measurements by PET. Twenty-two patients (age 62±8 yrs, 16 men) with CAD (at least 1 stenosis > 50% on quantitative coronary angiography-QCA) and 10 normal volunteers (age 52±7 yrs, 7 men) underwent 3T BOLD MRI and PET. For BOLD MRI a mid-ventricular slice was acquired every 30sec at rest and during adenosine stress (140 μg/kg/min). A set of 6 images was acquired at rest and at peak stress. Using PET with oxygen-15 labelled water, myocardial blood flow (MBF) was measured at baseline and during adenosine hyperemia. The BOLD short-axis view was divided into 6 segments, according to the mid-ventricular segments of the 17-AHA segment model, and mean signal intensities (SI) were calculated using QMass (Medis) software. PET images were analyzed with MATLAB software (MathWorks Inc.) and registered with the BOLD short-axis image using anatomical landmarks. Taking QCA as the gold standard, cut-off values for stress MBF (< 2.57ml/min/g - AUC 0.79) and BOLD SI change (< 4.75% -AUC 0.78) were determined to define ischemic segments. Rest MBF, stress MBF, coronary flow reserve and BOLD-SI change of ischemic (n=69), remote to ischemia (n=73) and normal segments (n=60) are shown in table . BOLD MRI and PET agreed on the presence or absence of ischemia in 18 of the 22 patients (82%), and in all normals. With regards to per segment analysis: taking PET as the gold standard and by applying the cut-off values for stress MBF and BOLD SI, BOLD MRI had only moderate sensitivity (61%) but good specificity (88%) for the identification of ischemia. T2-prepared SSFP 3T BOLD imaging is feasible in the clinical setting and has good agreement with PET perfusion measurements for the detection of myocardial ischemia.


2021 ◽  
pp. 20210461
Author(s):  
Yongtae Kim ◽  
Jung Jae Park ◽  
Chan Kyo Kim

Objective: Blood oxygenation-level dependent (BOLD) MRI may identify or quantify the regional distribution of hypoxia within a tumor. We aimed to evaluate the feasibility of BOLD MRI at 3 T in differentiating prostate cancer from benign tissue. Methods: A total of 145 patients with biopsy-proven prostate cancer underwent BOLD MRI at 3 T. BOLD MRI was performed using a multiple fast field echo sequence to acquire 12 T2*-weighted images. The R2* value (rate of relaxation, s−1) was measured in the index tumor, and benign peripheral (PZ) and transition zone (TZ), and the results were compared. The variability of R2* measurements was evaluated. Results: Tumor R2* values (25.95 s−1) were significantly different from the benign PZ (27.83 s−1) and benign TZ (21.66 s−1) (p < 0.001). For identifying the tumor, the area under the receiver operating characteristic of R2* was 0.606, with an optimal cut-off value of 22.8 s−1 resulting in 73.8% sensitivity and 52% specificity. In the Bland–Altman test, the mean differences in R2* values were 8.5% for tumors, 13.3% for benign PZ, and 6.8% for benign TZ. No associations between tumor R2* value and Gleason score, age, prostate volume, prostate-specific antigen, or tumor size. Conclusion: BOLD MRI at 3 T appears to be a feasible tool for differentiating between prostate cancer and benign tissue. However, further studies are required for a direct clinical application. Advances in knowledge: The R2* values are significantly different among prostate cancer, benign PZ, and benign TZ.


2019 ◽  
Vol 294 (46) ◽  
pp. 17326-17338
Author(s):  
Rei-ichi Ohno ◽  
Kenta Ichimaru ◽  
Seitaro Tanaka ◽  
Hikari Sugawa ◽  
Nana Katsuta ◽  
...  

Prolonged hyperglycemia generates advanced glycation end-products (AGEs), which are believed to be involved in the pathogenesis of diabetic complications. In the present study, we developed a polyclonal antibody against fructose-modified proteins (Fru-P antibody) and identified its epitope as glucoselysine (GL) by NMR and LC-electrospray ionization (ESI)- quadrupole TOF (QTOF) analyses and evaluated its potential role in diabetes sequelae. Although the molecular weight of GL was identical to that of fructoselysine (FL), GL was distinguishable from FL because GL was resistant to acid hydrolysis, which converted all of the FLs to furosine. We also detected GL in vitro when reduced BSA was incubated with fructose for 1 day. However, when we incubated reduced BSA with glucose, galactose, or mannose for 14 days, we did not detect GL, suggesting that GL is dominantly generated from fructose. LC-ESI-MS/MS experiments with synthesized [13C6]GL indicated that the GL levels in the rat eye lens time-dependently increase after streptozotocin-induced diabetes. We observed a 31.3-fold increase in GL 8 weeks after the induction compared with nondiabetic rats, and Nϵ-(carboxymethyl)lysine and furosine increased by 1.7- and 21.5-fold, respectively, under the same condition. In contrast, sorbitol in the lens levelled off at 2 weeks after diabetes induction. We conclude that GL may be a useful biological marker to monitor and elucidate the mechanism of protein degeneration during progression of diabetes.


2012 ◽  
Vol 25 (12) ◽  
pp. 1321-1330 ◽  
Author(s):  
Rami R. Hallac ◽  
Yao Ding ◽  
Qing Yuan ◽  
Roderick W. McColl ◽  
Jayanthi Lea ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Renata F. Leoni ◽  
Kelley C. Mazzetto-Betti ◽  
Afonso C. Silva ◽  
Antonio C. dos Santos ◽  
Draulio B. de Araujo ◽  
...  

Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.


Sign in / Sign up

Export Citation Format

Share Document