scholarly journals Somatic hypermutation and B–cell lymphoma

Author(s):  
Deborah Dunn–Walters ◽  
Christian Thiede ◽  
Birgit Alpen ◽  
Jo Spencer

During the B–cell response to T–cell–dependent antigens, the B cells undergo a rapid proliferative phase in the germinal centre. This is accompanied by the introduction of mutations into the immunoglobulin (Ig) variable region (V) genes. The B cells are then selected according to the affinity of the encoded immunoglobulin for antigen, resulting in affinity maturation of the response. Analysis of mutations in IgV genes has given insight into the history of individual B cells and their malignancies. In most cases, analysis of mutations confirms classifications of B–cell lineage designated by studies of cellular morphology and surface antigen expression. However, of particular interest is the subdivision of groups of malignancies by analysis of somatic hypermutation. It is now apparent that there are two subsets of chronic lymphocytic leukaemia (CLL), one with a low load of mutations and poor prognosis, and one with a heavy load of mutations with a much more favourable prognosis. In addition, in Burkitt's lymphoma, sporadic and endemic subtypes are now considered possibly to have a different pathogenesis, reflected in differences in the numbers of mutations. Hodgkin's disease, which was a mystery for many years, has now been shown to be a B–cell tumour. Although in many cases the Ig genes are crippled by somatic hypermutation, it is thought that failure to express Ig is more likely to be associated with problems of transcription. It has been proposed that the distribution of mutations in a B–cell lymphoma can be used to determine whether a lymphoma is selected. We have investigated the load and distribution of mutations in one group of lymphomas–marginal zone B–cell lymphomas of mucosa–associated lymphoid tissues (MALT–type lymphoma), which are dependent on Helicobacter pylori for disease progression, to investigate the limits of information that can be derived from such studies. Comparison of the load of mutations demonstrates that these tumours have approximately the same load of mutations as normal mucosal marginal zone B cells from the Peyer's patches and mucosal plasma cells. This is consistent with the origin of these cells from mucosal marginal zone B cells with plasma cell differentiation. To investigate selection in MALT lymphomas we compared a region of the framework region three in ten MALT lymphomas which use the V H4 family, with the same codons in groups of V H4 genes that are out of frame between V and J. The latter accumulate mutations but are not used and are not selected. A group of V H4 genes are in–frame between V and J were also included for comparison. There were no obvious differences in the distribution of mutations between the groups of genes; the same hot spots and cold spots were apparent in each. In the MALT lymphomas, selection was apparent in the framework regions only and the tendency was to conserve. We therefore feel that there is selection to conserve antibody structure and that this does not reflect selection for antigen. We do not believe that antigen selection can be deduced reliably from sequence information alone. It is possible that somatic hypermutation could be a cause of malignancy since it has been shown that the process may generate DNA strand breaks and is known to be able to generate insertions and deletions. Such events may mediate the translocation of genes—a process that is pivotal in the evolution of many lymphomas.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 162-162 ◽  
Author(s):  
Alexandra Traverse-Glehen ◽  
Aurelie Verney ◽  
Lucille Baseggio ◽  
Pascale Felman ◽  
Evelyne Callet-Bauchu ◽  
...  

Abstract Background and Objectives Splenic and nodal marginal zone B cell lymphoma (SMZL and NMZL) have been recently identified as distinct clinicopathological entities in the WHO classification. These lymphomas entities may have a common origin in the marginal B-cell compartment of the lymphoid organs. However the precise cell of origin of marginal zone B cells, its status in the B cell differentiation pathway and the mechanisms involved in lymphomagenesis remain unclear. The most widely held view is that marginal zone B cells are mostly memory B cells. But the origin of these cells, especially the transit through germinal center pathway, remains contradictory. Somatically mutated variable-region of immunoglobulin genes and bcl-6 gene represent at this time faithful markers for exposure to the germinal center. In addition, aberrant somatic hypermutations have been suggested to contribute to the development of B-cell lymphomas, occurring in the 5′ sequence of several proto-oncogenes. Interestingly those mutation do not occur in normal germinal center B cells. Design and Methods: IgVH, BCL-6, PIM1, Rho/TTF and PAX 5 genes, highly mutated in DLBCL and other indolent lymphoma such as B-CLL, were analysed for the presence of somatic mutations from 50 marginal zone lymphoma tissue and blood samples (21 NMZL and 29 SMZL including 10 cases with numerous villous lymphoma cells in peripheral blood). According to the morphological and immunophenotypical analysis, the fraction of malignant cells in the specimen was 70% or more in all cases. Mutational analysis was restricted to the regions previously shown to contain more than 95% of mutations in DLBCL. PCR products were directly sequenced on both sides and perfomed in duplicate in two independent reactions. Results: Out of 18 NMZL cases analysed for IgVH mutational status (3 cases not analysed for IgVH) 15 cases were mutated and 21 out of 28 in SMZL cases. Mutation of BCL-6 was detected in only 1 NMZL patients (1/21) and 1 SMZL patients (1/29). For RhoH/TTF, PIM1, PAX5 the mutation average was also low with only 1 case mutated per group and per gene, with a different case mutated in each for each gene. Conclusion In summary, we demonstrate the low frequency of aberrant somatic mutations in SMZL and NMZL, suggesting that this process is probably not a major contributor to lymphomageneis. However the frequent absence of mutation in BCL6 suggest a particular differentiation pathway, as suggested before in normal marginal zone B cells, possibly without transit through the germinal center. Interestingly the relatively high frequency of VH mutated cases compared with the frequent absence of mutation of BCL6, considered as a specific germinal center tag, could suggest somatic hypermutation outside the germinal center. In addition the absence of hypermutation could be linked with the absence of recurrent translocation in SMZL and NMZL, the translocation process haveing been associated with somatic hypermutation dysfunction.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4503-4506 ◽  
Author(s):  
Anja Mottok ◽  
Christoph Renné ◽  
Marc Seifert ◽  
Elsie Oppermann ◽  
Wolf Bechstein ◽  
...  

Abstract STATs are constitutively activated in several malignancies. In primary mediastinal large B-cell lymphoma and Hodgkin lymphoma (HL), inactivating mutations in SOCS1, an inhibitor of JAK/STAT signaling, contribute to deregulated STAT activity. Based on indications that the SOCS1 mutations are caused by the B cell–specific somatic hypermutation (SHM) process, we analyzed B-cell non-HL and normal B cells for mutations in SOCS1. One-fourth of diffuse large B-cell lymphoma and follicular lymphomas carried SOCS1 mutations, which were preferentially targeted to SHM hotspot motifs and frequently obviously inactivating. Rare mutations were observed in Burkitt lymphoma, plasmacytoma, and mantle cell lymphoma but not in tumors of a non–B-cell origin. Mutations in single-sorted germinal center B cells were infrequent relative to other genes mutated as byproducts of normal SHM, indicating that SOCS1 inactivation in primary mediastinal large B-cell lymphoma, HL, diffuse large B-cell lymphoma, and follicular lymphoma is frequently the result of aberrant SHM.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 388-390 ◽  
Author(s):  
Thierry Bonnefoix ◽  
Jian-Qing Mi ◽  
Pascal Perron ◽  
Mary Callanan ◽  
Cosima Semoun ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1528-1528 ◽  
Author(s):  
Laura Pasqualucci ◽  
Roberta Guglielmino ◽  
Sami N. Malek ◽  
Urban Novak ◽  
Mara Compagno ◽  
...  

Abstract Genomic instability is a driving force in tumor development that can be achieved by a variety of mechanisms, such as defective chromosome segregation or inactivation of the DNA mismatch repair pathway. Although B-cell lymphomas are associated with chromosomal translocations deregulating oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has long not been described. We have reported that the somatic hypermutation process (SHM), which normally targets the immunoglobulin variable region (IgV) and BCL6 genes in germinal center (GC) B-cells, functions aberrantly in >50% of diffuse large B-cell lymphoma (DLBCL), the most common type of B-cell non-Hodgkin lymphoma (Pasqualucci et al., Nature412:341, 2001). As a consequence, multiple somatic mutations are introduced into the 5′ region of genes that do not represent physiologic SHM targets, including known proto-oncogenes such as PIM1, PAX5, RhoH/TTF and cMYC. To further define the extent of this phenomenon, termed aberrant somatic hypermutation (ASHM), and to identify additional hypermutated loci of possible pathogenetic significance in DLBCL, we screened 113 genes for the presence of mutations affecting their 5′ sequences (≥1.3 Kb from the transcription start site, the target region for SHM) in 10 DLBCL cell lines. Fifteen genes (13.3%) were found to harbor a significant number of mutations (p<0.05), with 70% of the cell lines being mutated in 7 or more genes; among these, six B-cell specific loci -BCL7A, CIITA, IRF4, LRMP, NCOA3 and SIAT1- carried 9–53 mutational events distributed in 20 to 70% of the cases, corresponding to an overall mutation frequency of 0.032–0.15% (frequency in the mutated cases: 0.07–0.25%). The same genes were found hypermutated in a panel of 20 primary DLBCL biopsies, which displayed an overall mutation load of 7 to 45 distinct events/gene (total N=125). Mutations were of somatic origin, independent of chromosomal translocations to the Ig loci and were restricted to the first 1.5–2 Kb from the promoter. In addition, analogous to previously identified SHM and ASHM targets, the mutations exhibited characteristic features, including a bias for transitions over transversions, preferential hotspot (RGYW/WRCY motifs) targeting, and higher frequencies at G:C pairs. However, in contrast to physiologic SHM targets such as IgV and BCL6, none of the 4 newly identified hypermutated genes that have been analyzed so far (BCL7A, CIITA, SIAT1, LRMP) displayed significant levels of mutations in purified normal GC B-cells as well as in other B-cell malignancies. This finding indicates that these genes represent aberrant hypermutation targets resulting from a tumor-associated malfunction, possibly a loss of target specificity of the physiologic SHM process. Considering previous results and the present survey, 17 (13%) out of 130 genes investigated have been found involved in ASHM, suggesting that this aberrant activity may involve an extensive set of target genes in DLBCL. Since the mutations affect both regulatory and coding sequences of the targeted genes, aberrant SHM may represent a major contributor to the pathogenesis of this disease and may explain in part its phenotypic and clinical heterogeneity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3248-3248
Author(s):  
Sridhar Chaganti ◽  
Noelia Begue Pastor ◽  
Mark T. Drayson ◽  
Andy I. Bell ◽  
Alan B. Rickinson

Abstract Somatic hypermutation of immunoglobulin (Ig) gene sequences in the germinal centres of lymphoid tissues is necessary for affinity maturation of B cell responses to antigen challenge. This process generates a few clones with improved affinity that are selected into B cell memory and many clones with other non favourable Ig mutations, including some cells with functionally inactivated Ig gene that normally die by apoptosis. It is postulated that infection with Epstein-Barr virus (EBV), a B lymphotropic agent linked to several types of B cell lymphoma, can rescue germinal centre cells with unfavourable mutations. This creates a pool of infected cells at greater risk of developing into lymphomas. In the present work, CD38+ germinal centre B cells were separated from tonsil by negative selection for IgD and CD39. Peripheral blood naïve and memory B cell subpopulations were FACS sorted as IgD+, CD27− and IgD−, CD27+ fractions respectively. These cells were infected with EBV (B95.8 strain) in vitro and seeded at limiting dilutions onto fibroblast feeders. EBV transformed lymphoblastoid cell lines (LCLs) from such cultures were analysed for surface Ig phenotype. Naïve B cell transformants were consistently IgM+, IgD+. Memory B cell transformants were IgM+ in some cases but more frequently IgG+ or IgA+. Germinal centre transformants showed the same spectrum of surface Ig phenotypes as memory cell transformants but in addition we identified six germinal centre derived LCLs which were consistently surface Ig negative. Sequencing from these lines confirmed that in at least three cases EBV had rescued cells with functionally inactivated Ig heavy chain gene.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2-2 ◽  
Author(s):  
Masumichi Saito ◽  
Ryan T. Phan ◽  
Herbert C. Morse ◽  
Laura Pasqualucci ◽  
Riccardo Dalla-Favera

Abstract Deregulated expression of the proto-oncogenes BCL6 and c-MYC caused by chromosomal translocation or somatic hypermutation is common in non-Hodgkin B cell lymphoma derived from germinal center (GC) B cells, including diffuse large cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Normal GC B cells express BCL6, whereas, surprisingly, they do not express c-MYC, suggesting that the expression of this oncogene in BL and DLBCL (20% of cases) is ectopic (Klein, U. et al. Proc Natl Acad Sci U S A100, 2639–2644, 2003). Here we report that c-MYC is absent in proliferating GC B cells because it is transcriptionally suppressed by BCL6, as demonstrated by the presence of specific BCL6 binding sites in the c-MYC promoter region and by chromatin immunoprecipitation experiments showing that BCL6 is bound to these sites in vivo. Thus, c-MYC escapes BCL6-mediated suppression in lymphoma leading to the co-expression of the two transcription factors, an event never observed in immunohistochemical and gene expression profile analysis of normal GC B cells. Surprisingly, co-immunoprecipitation experiments and in vitro binding experiments indicate that, when co-expressed, BCL6 and c-MYC are physically bound in a novel complex detectable in DLBCL and BL cell lines as well as in primary lymphoma cases. The formation of the BCL6/c-MYC complex has several significant functional consequences on the function of both c-MYC and BCL6: 1) a two fold, BCL6-binding dependent increase in c-MYC half-life, an event that has been shown to contribute to its oncogenic activation; 2) a synergistic increase in the ability of both BCL6 and c-MYC to suppress MIZ1-activated transcription of the p21CIP cell cycle arrest gene; 3) MYC-dependent inhibition of BCL6 acetylation by p300, an event that physiologically inactivates BCL6 via c-MYC-mediated recruitment of HDAC. Notably, the pathologic co-expression of c-MYC and BCL6 was shown to have pathologic consequences in vivo, since double transgenic BCL6/c-MYC mice display accelerated lymphoma development and the appearance of a novel GC-derived tumor phenotype not recognizable in single transgenic animals and containing the pathologic c-MYC/BCL6 complex. Thus, the pathologic co-expression and illegitimate physical interaction of BCL6 and c-MYC leads to an increase in the constitutive activity of both oncogenes. These results identify a novel mechanism of oncogenic function for BCL6 and c-MYC and a novel tumor-specific protein complex of potential therapeutic interest.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Deutsch ◽  
Ariane Aigelsreiter ◽  
Christine Beham-Schmid ◽  
Alfred Beham ◽  
Werner Linkesch ◽  
...  

Abstract Extranodal marginal zone B-cell lymphoma of mucosa associated lymphoid tissue (MALT lymphoma) accounts for approximately 7% to 8% of all non-Hodgkin lymphomas (NHLs) being the third most frequent histological subtype. The gastrointestinal tract - particularly the stomach - is the most common site of MALT lymphoma comprising 50% of all cases, but virtually every organ may be affected by this type of lymphoma. Transformation (or de novo emergence at extranodal sites) in diffuse large B-cell lymphoma (DLBCL) occurs but - according to the WHO criteria - is considered as separate entity. The understanding of the molecular biology of MALT lymphoma has significantly improved following the recent cloning of recurrent balanced translocations such as t(11;18) or t(14;18), but a mechanism for genome-wide instability during MALT lymphomagenesis has not been described. We have reported that the somatic hypermutation process (SHM) physiologically aimed at mutating the immunoglobulin variable gene (IgV) aberrantly targets multiple proto-oncogenes in &gt;50% of DLCBL (Pasqualucci et al., Nature412:341, 2001). Consequently, multiple mutations are introduced in the 5′ region of genes including known proto-oncogenes such as PIM-1, PAX-5, Rho/TTF and c-MYC. To further investigate whether aberrant somatic hypermutation (ASHM) also occurs in MALT lymphoma, we studied the mutation profile of these genes in 17 MALT lymphomas (6 of gastric- and 11 of nongastric origin) and 18 extranodal DLBCL (10 gastric, 8 nongastric). Mutations in one or more genes were detected in 15 of 17 (88.2%) cases of MALT lymphoma and in all of 18 (100%) cases of extranodal DLBCL. 7 of 17 (41.2%) and 15 of 18 (83.3%) carried mutations in two or more genes in the MALT- and DLBC-lymphoma group, respectively. Overall, mutations in PIM-1 occurred in 5 of 17 (29.4%) cases with MALT lymphoma and in 10 of 18 (55.5%) in extranodal DLBCL cases. For PAX-5, the distribution of mutated cases between MALT- and DLBC-lymphoma was 6 of 17 (35.3%) and 10 of 18 (55.5%), for Rho/TTF 3 of 17 (17.6%) and 8 of 18 (44.4%) and for c-MYC 9 of 17 (52.9%) and 12 of 18 (66.6%), respectively. A total of 99 sequence variants were found in 35 cases, 29 in the MALT lymphomas and 70 in extranodal DLBCL. Although the mutations were almost exclusively single base pair substitutions (n=98 ), an insertion was also present (n=1). Mutations were of somatic origins, occur independent of chromosomal translocations to the Ig loci and share features of the IgV SHM process including bias for transition over transversion, preferential hotspot (RGYW/WRCY) targeting and restriction to the first 1–2Kb from the promoter. The mean mutation frequency in mutated MALT lymphomas was with 0.045 x10−2/bp 1.7 fold lower compared to 0.08 x10−2/bp in mutated extranodal DLBCL. Further in PIM-1, PAX-5 and c-MYC some of the mutations were found to affect coding exons, leading to amino acid exchanges, thus potentially altering gene function. These data indicate that aberrant SHM is associated with extranodal DLBCL and MALT lymphoma, likewise. By mutating regulatory and coding sequences of the targeted genes and by possibly favouring chromosomal translocations ASHM may represent a major contributor to their pathogenesis. ASHM may further support a model of MALT lymphomagenesis leading from an antigen driven lesion to transformed MALT lymphoma finally evolving to overt DLBCL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1589-1589 ◽  
Author(s):  
Miguel Alcoceba ◽  
Elena Sebastián ◽  
Ana Balanzategui ◽  
Luis Marín ◽  
Santiago Montes-Moreno ◽  
...  

Abstract Abstract 1589 Introduction: Acquired potentially N-glycosylation sites are produced by somatic hypermutation (SHM) in the immunoglobulin (Ig) variable region. This phenomenon is produced in ∼9% of normal B-cells and seems to be related to certain B-cell lymphoproliferative disorders (B-LPDs) such as follicular lymphoma (FL, 79%), endemic Burkitt lymphoma (BL, 82%) and diffuse large B-cell lymphoma (DLBCL, 41%). These data suggest that new potential N-glycosylation sites could be related to germinal center B (GCB)-LPDs. By contrast, in other B-LPDs, such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), MALT lymphoma, Waldenström macroglobulinemia (WM) or multiple myeloma (MM), these modifications have not been analyzed in deep. Aims: To evaluate the acquisition of potential N-glycosylation sites in B-LPDs, including immunohystochemical DLBCL subtypes (GCB and non-GCB) and specific non-GCB-LPDs, such as hairy cell leukemia (HCL), splenic marginal-zone lymphoma (SMZL), CLL, MCL, ocular extranodal marginal zone lymphoma (OAEMZL), MM and WM. Patients: A total of 953 sequences (203 from our group and 750 previously published sequences) of B-LPDs were included. Diagnosis distribution was as follows: DLBCL (n=235), MCL (n=235), CLL (n=166), MM (n=96), OAEMZL (n=82), SMZL (n=68), WM (n=38) and HCL (n=33). Methods: Acquired N-glycosylation sites were counted according to the sequence Asn-X-Ser/Thr, where X could be any amino acid except Pro. Natural motifs in germline sequences of IGHV1–08, IGHV4–34 e IGHV-5a were not considered. Fisher test was used to perform comparisons between groups. To distinguish DLBCL biological subtypes (GCB and non-GCB DLBCL), Hans' algorithm was used. Results: A total of 83 out of the 235 DLBCL cases acquired at least a new N-glycosylation site, a higher value than in normal B-cells (35% vs. 9%, p<0.0001). Higher incidence of these motifs in the group of GCB as compared to non-GCB DLBCL were observed (52% vs. 20%, p<0.0001). Those cases diagnosed of HCL, CLL, MCL, MM, WM, OAEMZL and SMZL presented a reduced number of new N-glycosylation sites, showing similar values than normal B-cells (range 3–18%, p=ns). Conclusions: We described for the first time the pattern of N-glycosylation in HCL, SMZL, OAEMZL and in the immunohystochemical DLBCL subtypes, where the GCB-DLBCL showed a higher number of new N-glycosylation sites with respect to non-GCB DLBCL and other non-GCB-LPDs. The presence of novel N-glycosylation sites in FL, BL and in GCB-DLBCL strongly suggests that these motifs are characteristic of the germinal center B-LPDs. Disclosures: No relevant conflicts of interest to declare.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1008960
Author(s):  
Pilar Delgado ◽  
Ángel F. Álvarez-Prado ◽  
Ester Marina-Zárate ◽  
Isora V. Sernandez ◽  
Sonia M. Mur ◽  
...  

Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.


2020 ◽  
Author(s):  
Pilar Delgado ◽  
Ángel F Álvarez-Prado ◽  
Ester Marina-Zárate ◽  
Isora V Sernandez ◽  
Sonia M Mur ◽  
...  

ABSTRACTMost B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GCs B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their immunoglobulin (Ig) genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supraactivity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document