scholarly journals Right-hemispheric dominance for visual remapping in humans

2011 ◽  
Vol 366 (1564) ◽  
pp. 572-585 ◽  
Author(s):  
L. Pisella ◽  
N. Alahyane ◽  
A. Blangero ◽  
F. Thery ◽  
S. Blanc ◽  
...  

We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans—and present additional original data—which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward . This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Selene Schintu ◽  
Elisa Martín-Arévalo ◽  
Michael Vesia ◽  
Yves Rossetti ◽  
Romeo Salemme ◽  
...  

Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA’s effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPAper se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.


2012 ◽  
Vol 69 (8) ◽  
pp. 681-685
Author(s):  
Natasa Djukic-Macut ◽  
Slobodan Malobabic ◽  
Natalija Stefanovic ◽  
Predrag Mandic ◽  
Tatjana Filipovic ◽  
...  

Background/Aim. Both superior parietal lobule (SPL) of dorsolateral hemispheric surface and precuneus (PEC) of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV) of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres) formaline fixed human brains (both sexes; 27- 65 years) tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains) and the group II with the larger right hemisphere (5 brains). Serial Nissl sections (5 ?m) of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3), except in brains with the larger right hemisphere.


2021 ◽  
Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  

ABSTRACTIn the present work, we applied anodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex (PPC) and frontal eye field (FEF) of the right hemisphere in healthy subjects to modulate attentional orienting and disengagement in a gap-overlap task. Both stimulations led to bilateral improvements in saccadic reaction times (SRTs), with larger effects for gap trials. However, analyses showed that the gap effect was not affected by tDCS. Importantly, we observed significant effects of baseline performance that may mediate side- and task-specific effects of brain stimulation.


2020 ◽  
Author(s):  
Selene Schintu ◽  
Catherine A. Cunningham ◽  
Michael Freedberg ◽  
Paul Taylor ◽  
Stephen J. Gotts ◽  
...  

AbstractHemispatial neglect is thought to result from disruption of interhemispheric equilibrium. Right hemisphere lesions deactivate the right frontoparietal network and hyperactivate the left via release from interhemispheric inhibition. Support for this theory comes from neuropsychological evidence as well as transcranial magnetic stimulation (TMS) studies in healthy subjects, in whom right posterior parietal cortex (PPC) inhibition causes neglect-like, rightward, visuospatial bias. Concurrent TMS and fMRI after right PPC TMS show task-dependent changes but may fail to identify effects of stimulation in areas not directly activated by the specific task, complicating interpretations. We used resting-state functional connectivity (RSFC) after inhibitory TMS over the right PPC to examine changes in the networks underlying visuospatial attention.In a crossover experiment in healthy individuals, we delivered continuous theta burst TMS to the right PPC and vertex as control condition. We hypothesized that PPC inhibitory stimulation would cause a rightward visuospatial bias, decrease PPC connectivity with frontal areas, and increase PPC connectivity with the attentional network in the left hemisphere. We also expected that individual differences in fractional anisotropy (FA) in white matter connections between the PPCs would account for variability in TMS-induced RSFC changes.As expected, TMS over the right PPC caused a rightward shift in line bisection judgment and increased RSFC between the right PPC and the left superior temporal gyrus. This effect was inversely related to FA in the posterior corpus callosum. Local inhibition of the right PPC reshapes connectivity in the attentional network and depends on interhemispheric connections.


2020 ◽  
Vol 30 (9) ◽  
pp. 4747-4758 ◽  
Author(s):  
Selene Schintu ◽  
Michael Freedberg ◽  
Stephen J Gotts ◽  
Catherine A Cunningham ◽  
Zaynah M Alam ◽  
...  

Abstract Prism adaptation (PA) alters spatial cognition according to the direction of visual displacement by temporarily modifying sensorimotor mapping. Right-shifting prisms (right PA) improve neglect of left visual field in patients, possibly by decreasing activity in the left hemisphere and increasing it in the right. Left PA shifts attention rightward in healthy individuals by an opposite mechanism. However, functional imaging studies of PA are inconsistent, perhaps because of differing activation tasks. We measured resting-state functional connectivity (RSFC) in healthy individuals before and after PA. When contrasted, right versus left PA decreased RSFC in the spatial navigation network defined by the right posterior parietal cortex (PPC), hippocampus, and cerebellum. Within-PA-direction comparisons showed that right PA increased RSFC in subregions of the PPCs and between the PPCs and the right middle frontal gyrus and left PA decreased RSFC between these regions. Both right and left PA decreased RSFC between the PPCs and bilateral temporal areas. In summary, right PA increases connectivity in the right frontoparietal network and left PA produces essentially opposite effects. Furthermore, right, compared with left, PA modulates RSFC in the right hemisphere navigation network.


1999 ◽  
Vol 354 (1387) ◽  
pp. 1325-1346 ◽  
Author(s):  
M.-Marsel Mesulam

The syndrome of contralesional neglect reflects a lateralized disruption of spatial attention. In the human, the left hemisphere shifts attention predominantly in the contralateral hemispace and in a contraversive direction whereas the right hemisphere distributes attention more evenly, in both hemispaces and both directions. As a consequence of this asymmetry, severe contralesional neglect occurs almost exclusively after right hemisphere lesions. Patients with left neglect experience a loss of salience in the mental representation and conscious perception of the left side and display a reluctance to direct orientating and exploratory behaviours to the left. Neglect is distributed according to egocentric, allocentric, world-centred, and object-centred frames of reference. Neglected events can continue to exert an implicit influence on behaviour, indicating that the attentional filtering occurs at the level of an internalized representation rather than at the level of peripheral sensory input. The unilateral neglect syndrome is caused by a dysfunction of a large-scale neurocognitive network, the cortical epicentres of which are located in posterior parietal cortex, the frontal eye fields, and the cingulate gyrus. This network coordinates all aspects of spatial attention, regardless of the modality of input or output. It helps to compile a mental representation of extrapersonal events in terms of their motivational salience, and to generate ‘kinetic strategies’ so that the attentional focus can shift from one target to another.


2003 ◽  
Vol 89 (1) ◽  
pp. 460-471 ◽  
Author(s):  
Lisa Koski ◽  
Marco Iacoboni ◽  
Marie-Charlotte Dubeau ◽  
Roger P. Woods ◽  
John C. Mazziotta

Imitation is a basic form of motor learning during development. We have a preference to imitate the actions of others as if looking in a mirror (specular imitation: i.e., when the actor moves the left hand, the imitator moves the right hand) rather than with the anatomically congruent hand (anatomic imitation: i.e., actor and imitator both moving the right hand). We hypothesized that this preference reflects changes in activity in previously described frontoparietal cortical areas involved in directly matching observed and executed actions (mirror neuron areas). We used functional magnetic resonance imaging to study brain activity in normal volunteers imitating left and right hand movements with their right hand. Bilateral inferior frontal and right posterior parietal cortex were more active during specular imitation compared with anatomic imitation and control motor tasks. Furthermore this same pattern of activity was also observed in the rostral part of the supplementary motor area (SMA-proper) of the right hemisphere. These findings suggest that the degree of involvement of frontoparietal mirror areas in imitation depends on the nature of the imitative behavior, ruling out a linguistic mediation of these areas in imitation. Moreover, activity in the SMA appears to be tightly coupled to frontoparietal mirror areas when subjects copy the actions of others.


2016 ◽  
Vol 371 (1697) ◽  
pp. 20150263 ◽  
Author(s):  
Aidan P. Murphy ◽  
David A. Leopold ◽  
Glyn W. Humphreys ◽  
Andrew E. Welchman

The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC ( N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions ( N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’.


2020 ◽  
Author(s):  
Ryan Yang ◽  
Corrinne Dunbar ◽  
Alina Sonesra ◽  
Suhyeorn Park ◽  
Timothy Pham ◽  
...  

AbstractSustained attention is supported by circuits in the frontoparietal attention network. In human and primate studies, the right posterior parietal cortex (PPC) shows dominance for sustained attention, and phase-amplitude coupling (PAC) throughout the frontoparietal network correlates with performance on attention tasks. Here we evaluate oscillatory dynamics of bilateral PPC in mice during the 5-Choice Serial Reaction Time Task (5-CSRTT). Right PPC theta-gamma PAC (TG-PAC) and gamma power were independently elevated to a greater degree than the left PPC during the period prior to a correct response and were significantly correlated with accuracy in both simple and difficult tasks. Greater task difficulty was also associated with greater hemispheric asymmetry in TG-PAC, favoring the right PPC. These findings highlight the engagement of PPC with sustained attention in mice, reflected by increases in TG-PAC and gamma power, with maximal expression in the right hemisphere.


2005 ◽  
Vol 93 (2) ◽  
pp. 954-962 ◽  
Author(s):  
W. Pieter Medendorp ◽  
Herbert C. Goltz ◽  
J. Douglas Crawford ◽  
Tutis Vilis

Recently, using event-related functional MRI (fMRI), we located a bilateral region in the human posterior parietal cortex (retIPS) that topographically represents and updates targets for saccades and pointing movements in eye-centered coordinates. To generate movements, this spatial information must be integrated with the selected effector. We now tested whether the activation in retIPS is dependent on the hand selected. Using 4-T fMRI, we compared the activation produced by movements, using either eyes or the left or right hand, to targets presented either leftward or rightward of central fixation. The majority of the regions activated during saccades were also activated during pointing movements, including occipital, posterior parietal, and premotor cortex. The topographic retIPS region was activated more strongly for saccades than for pointing. The activation associated with pointing was significantly greater when pointing with the unseen hand to targets ipsilateral to the hand. For example, although there was activation in the left retIPS when pointing to targets on the right with the left hand, the activation was significantly greater when using the right hand. The mirror symmetric effect was observed in the right retIPS. Similar hand preferences were observed in a nearby anterior occipital region. This effector specificity is consistent with previous clinical and behavioral studies showing that each hand is more effective in directing movements to targets in ipsilateral visual space. We conclude that not only do these regions code target location, but they also appear to integrate target selection with effector selection.


Sign in / Sign up

Export Citation Format

Share Document