scholarly journals Stratospheric ozone depletion due to nitrous oxide: influences of other gases

2012 ◽  
Vol 367 (1593) ◽  
pp. 1256-1264 ◽  
Author(s):  
R. W. Portmann ◽  
J. S. Daniel ◽  
A. R. Ravishankara

The effects of anthropogenic emissions of nitrous oxide (N 2 O), carbon dioxide (CO 2 ), methane (CH 4 ) and the halocarbons on stratospheric ozone (O 3 ) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N 2 O and CO 2 probably playing the dominant roles as halocarbons return towards pre-industrial levels. There are nonlinear interactions between these gases that preclude unambiguously separating their effect on ozone. For example, the CH 4 increase during the twentieth century reduced the ozone losses owing to halocarbon increases, and the N 2 O chemical destruction of O 3 is buffered by CO 2 thermal effects in the middle stratosphere (by approx. 20% for the IPCC A1B/WMO A1 scenario over the time period 1900–2100). Nonetheless, N 2 O is expected to continue to be the largest anthropogenic emission of an O 3 -destroying compound in the foreseeable future. Reductions in anthropogenic N 2 O emissions provide a larger opportunity for reduction in future O 3 depletion than any of the remaining uncontrolled halocarbon emissions. It is also shown that 1980 levels of O 3 were affected by halocarbons, N 2 O, CO 2 and CH 4 , and thus may not be a good choice of a benchmark of O 3 recovery.

2013 ◽  
Vol 13 (11) ◽  
pp. 29447-29481
Author(s):  
W. Wang ◽  
W. Tian ◽  
S. Dhomse ◽  
F. Xie ◽  
J. Shu

Abstract. We have investigated the impact of assumed nitrous oxide (N2O) increases on stratospheric chemistry and dynamics by a series of idealized simulations. In a future cooler stratosphere the net yield of NOy from a changed N2O is known to decrease, but NOy can still be significantly increased by the increase of N2O. Results with a coupled chemistry-climate model (CCM) show that increases in N2O of 50%/100% between 2001 and 2050 result in more ozone destruction, causing a reduction in ozone mixing ratios of maximally 6%/10% in the middle stratosphere at around 10 hPa. This enhanced destruction could cause an ozone decline in the second half of this century in the middle stratosphere. However, the total ozone column still shows an increase in future decades, though the increase of 50%/100% in N2O caused a 2%/6% decrease in TCO compared with the reference simulation. N2O increases have significant effects on ozone trends at 20–10 hPa in the tropics and at northern high latitude, but have no significant effect on ozone trends in the Antarctic stratosphere. The ozone depletion potential for N2O in a future climate depends both on stratospheric temperature changes and tropospheric N2O changes, which have reversed effects on ozone in the middle and upper stratosphere. A 50% CO2 increase in conjunction with a 50% N2O increase cause significant ozone depletion in the middle stratosphere and lead to an increase of ozone in the upper stratosphere. Based on the multiple linear regression analysis and a series of sensitivity simulations, we find that the chemical effect of N2O increases dominates the ozone changes in the stratosphere while the dynamical and radiative effects of N2O increases are insignificant on average. However, the dynamical effect of N2O increases may cause large local changes in ozone mixing ratios, particularly, in the Southern Hemisphere lower stratosphere.


2014 ◽  
Vol 14 (23) ◽  
pp. 12967-12982 ◽  
Author(s):  
W. Wang ◽  
W. Tian ◽  
S. Dhomse ◽  
F. Xie ◽  
J. Shu ◽  
...  

Abstract. We have investigated the impact of the assumed nitrous oxide (N2O) increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM). In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO) compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2) increases can strongly offset the ozone depletion effect of N2O.


2010 ◽  
Vol 10 (23) ◽  
pp. 11779-11790 ◽  
Author(s):  
E. Remsberg ◽  
G. Lingenfelser

Abstract. Stratospheric Aerosol and Gas Experiment (SAGE II) Version 6.2 ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere from September 1991 to August 2005. The profile data are averaged within twelve, 20°-wide latitude bins from 55° S to 55° N and at twelve altitudes from 27.5 to 55.0 km. The separate, 14-yr data time series are analyzed using multiple linear regression (MLR) models that include seasonal, 28 and 21-month, 11-yr sinusoid, and linear trend terms. Proxies are not used for the 28-mo (QBO-like), 11-yr solar uv-flux, or reactive chlorine terms. Instead, the present analysis focuses on the periodic 11-yr terms to see whether they are in-phase with that of a direct, uv-flux forcing or are dominated by some other decadal-scale influence. It is shown that they are in-phase over most of the latitude/altitude domain and that they have max minus min variations between 25° S and 25° N that peak near 4% between 30 and 40 km. Model simulations of the direct effects of uv-flux forcings agree with this finding. The shape of the 11-yr ozone response profile from SAGE II also agrees with that diagnosed for the stratosphere over the same time period from the HALOE data. Ozone in the middle stratosphere of the northern subtropics is perturbed during 1991−1992 following the eruption of Pinatubo, and there are pronounced decadal-scale variations in the ozone of the upper stratosphere for the northern middle latitudes presumably due to dynamical forcings. The 11-yr ozone responses of the southern hemisphere appear to be free of those extra influences. The associated linear trend terms from the SAGE II analyses are slightly negative (−2 to −4%/decade) between 35 and 45 km and nearly constant across latitude. This finding is consistent with the fact that ozone is estimated to have decreased by no more than 1.5% due to the increasing chlorine from mid-1992 to about 2000 but with little change thereafter. It is concluded that a satellite, solar occultation measurement provides both the signal sensitivity and the vertical resolution to record the stratospheric ozone response to the forcing from the solar uv-flux, as well as those due to any other long-term changes.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
David Shultz

Stratospheric ozone depletion between 1979 and 2010 resulted in a slight decrease of ozone in the troposphere during that period despite increased ozone production from anthropogenic emissions.


2010 ◽  
Vol 10 (7) ◽  
pp. 17307-17340
Author(s):  
E. Remsberg ◽  
G. Lingenfelser

Abstract. Stratospheric Aerosol and Gas Experiment (SAGE II) Version 6.2 ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere from September 1991 to August 2005, a time span for which the trends in reactive chlorine are relatively small. The profile data are averaged within twelve, 20°-wide latitude bins from 55° S to 55° N and at eleven altitudes from 27.5 to 52.5 km. The separate, 14-yr data time series are analyzed using multiple linear regression (MLR) models that include seasonal, interannual, 11-yr sinusoid, and linear trend terms. Proxies are not used for the interannual, solar uv-flux, or reactive chlorine terms. Instead, the present analysis focuses on the periodic 11-yr terms to see whether they are in-phase with that of a direct, uv-flux forcing or are dominated by some other decadal-scale influence. It is shown that they are in-phase over most of the latitude/altitude domain and that they have max minus min variations between 25° S and 25° N that peak near 4% between 30 and 40 km. Model simulations of the direct effects of uv-flux forcings agree with this finding. Ozone in the middle stratosphere of the northern subtropics is perturbed during 1991–1992, following the eruption of Pinatubo. There are also pronounced decadal-scale variations in the ozone of the upper stratosphere for the middle latitudes of the Northern Hemisphere, presumably due to dynamical forcings. The 11-yr ozone responses of the Southern Hemisphere are relatively free of those extra influences. The associated linear trend terms from the analyses are negative (−2 to −4%/decade) for this 14-yr time period and are nearly constant across latitude in the upper stratosphere. This finding is consistent with the fact that total and reactive chlorine are not changing appreciably from 1991 to 2005. It is concluded that the satellite, solar occultation technique can be used to record the responses of stratospheric ozone to the decadal-scale forcings from the solar uv-flux, as well as those due to the long-term changes from dynamic forcings, reactive chlorine, and the greenhouse gases.


2016 ◽  
Author(s):  
Kazutoshi Sagi ◽  
Kristell Pérot ◽  
Donal Murtagh ◽  
Yvan Orsolini

Abstract. Observations from the Odin/Sub-Millimetre Radiometer (SMR) instrument have been as- similated into the DIAMOND model (Dynamic Isentropic Assimilation Model for OdiN Data), in order to estimate the chemical ozone (O3) loss in the stratosphere. This data assimilation technique is described in Sagi and Murtagh (2016), in which it was used to study the inter-annual variability in ozone depletion during the entire Odin operational time and in both hemispheres. Our study focuses on the Arctic region, where two O3 destruction mechanisms play an important role, involving halogen and nitrogen oxides (NOx) chemical families, respectively. The temporal evolution and geographical distribution of O3 loss in the low and middle stratosphere have been investigated between 2002 and 2013. For the first time, this has been done based on the study of a series of winter-spring seasons over more than a decade, spanning very different dynamical conditions. The chemical mechanisms involved in O3 depletion are very sensitive to thermal conditions and dynamical activity, which are extremely variable in the Arctic stratosphere. We have focused our analysis on particularly cold and warm winters, in order to study the influence it has on ozone loss. The winter 2010/2011 is considered as an example for cold conditions. This case, that has been the subject of many studies, was characterised by a very stable vortex associated with particularly low temperatures, which led to an important halogen-induced O3 loss occurring inside the vortex in the lower stratosphere. We found a loss of 2.1 ppmv at an altitude of 450 K in the end of March 2011, which corresponds to the largest ozone depletion in the northern hemisphere observed during the last decade. This result is consistent with other studies. A similar situation was observed during the winters 2004/2005 and 2007/2008, although the amplitude of the O3 destruction was lower. To study the opposite situation, corresponding to a warm and unstable winter in the stratosphere, we performed a composite calculation of four selected cases, 2003/2004, 2005/2006, 2008/2009 and 2012/2013, which were all affected by a major mid-winter sudden stratospheric warming event, related to particularly high dynamical activity. We have shown that such conditions were associated with low O3 loss below 500 K, while O3 depletion in the middle stratosphere, where the role of NOx-induced destruction processes is prevailing, was particularly important. This can mainly be explained by the horizontal mixing of NOx-rich air from lower latitudes with vortex air, that takes place in case of strongly disturbed dynamical situation. In this manuscript, we show that the relative contribution of O3 depletion mechanisms occurring in the lower or in the middle stratosphere is dramatically influenced by dynamical and thermal conditions. We provide confirmation that the O3 loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effects of halogens in the case of a dynamically unstable Arctic winter. This is the first time that such a study has been performed over a long period of time, covering more than ten years of observations.


2004 ◽  
Vol 4 (2) ◽  
pp. 1911-1940 ◽  
Author(s):  
G. Koch ◽  
H. Wernli ◽  
S. Buss ◽  
J. Staehelin ◽  
T. Peter ◽  
...  

Abstract. For the winter 1999/2000 transport of air masses out of the vortex to mid-latitudes and ozone destruction inside and outside the northern polar vortex is studied to quantify the impact of earlier winter (before March) polar ozone destruction on mid-latitude ozone. Nearly 112 000 trajectories are started on 1 December 1999 on 6 different potential temperature levels between 500–600 K and for a subset of these trajectories photo-chemical box-model calculations are performed. We linked a decline of −0.9% of mid-latitude ozone in this layer occurring in January and February 2000 to ozone destruction inside the vortex and successive transport of these air masses to mid-latitudes. Further, the impact of denitrification, PSC-occurrence and anthropogenic chlorine loading on future stratospheric ozone is determined by applying various scenarios. Lower stratospheric temperatures and denitrification were found to play the most important role in the future evolution of polar ozone depletion.


2016 ◽  
Vol 18 (12) ◽  
pp. 1519-1529 ◽  
Author(s):  
Shiva Ladan ◽  
Pierre-André Jacinthe

Nitrous oxide (N2O) is an atmospheric constituent implicated in climate warming and stratospheric ozone depletion.


Sign in / Sign up

Export Citation Format

Share Document