scholarly journals Evolutionary dynamics of n -player games played by relatives

2014 ◽  
Vol 369 (1642) ◽  
pp. 20130359 ◽  
Author(s):  
Hisashi Ohtsuki

One of the core concepts in social evolution theory is kin selection. Kin selection provides a perspective to understand how natural selection operates when genetically similar individuals are likely to interact. A family-structured population is an excellent example of this, where relatives are engaged in social interactions. Consequences of such social interactions are often described in game-theoretical frameworks, but there is a growing consensus that a naive inclusive fitness accounting with dyadic relatedness coefficients are of limited use when non-additive fitness effects are essential in those situations. Here, I provide a general framework to analyse multiplayer interactions among relatives. Two important results follow from my analysis. First, it is generally necessary to know the n -tuple genetic association of family members when n individuals are engaged in social interactions. However, as a second result, I found that, for a special class of games, we need only measures of lower-order genetic association to fully describe its evolutionary dynamics. I introduce the concept of degree of the game and show how this degree is related to the degree of genetic association.

2011 ◽  
Vol 278 (1723) ◽  
pp. 3313-3320 ◽  
Author(s):  
Andrew F. G. Bourke

Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.


2012 ◽  
Vol 279 (1747) ◽  
pp. 4596-4603 ◽  
Author(s):  
Peter Taylor ◽  
Wes Maciejewski

We study the evolution of a pair of competing behavioural alleles in a structured population when there are non-additive or ‘synergistic’ fitness effects. Under a form of weak selection and with a simple symmetry condition between a pair of competing alleles, Tarnita et al. provide a surprisingly simple condition for one allele to dominate the other. Their condition can be obtained from an analysis of a corresponding simpler model in which fitness effects are additive. Their result uses an average measure of selective advantage where the average is taken over the long-term—that is, over all possible allele frequencies—and this precludes consideration of any frequency dependence the allelic fitness might exhibit. However, in a considerable body of work with non-additive fitness effects—for example, hawk–dove and prisoner's dilemma games—frequency dependence plays an essential role in the establishment of conditions for a stable allele-frequency equilibrium. Here, we present a frequency-dependent generalization of their result that provides an expression for allelic fitness at any given allele frequency p . We use an inclusive fitness approach and provide two examples for an infinite structured population. We illustrate our results with an analysis of the hawk–dove game.


2013 ◽  
Vol 9 (6) ◽  
pp. 20130454 ◽  
Author(s):  
Stephanie J. Kamel ◽  
Richard K. Grosberg

Until recently, little attention has been paid to the existence of kin structure in the sea, despite the fact that many marine organisms are sessile or sedentary. This lack of attention to kin structure, and its impacts on social evolution, historically stems from the pervasive assumption that the dispersal of gametes and larvae is almost always sufficient to prevent any persistent associations of closely related offspring or adults. However, growing evidence, both theoretical and empirical, casts doubt on the generality of this assumption, not only in species with limited dispersal, but also in species with long dispersive phases. Moreover, many marine organisms either internally brood their progeny or package them in nurseries, both of which provide ample opportunities for kinship to influence the nature and outcomes of social interactions among family members. As the evidence for kin structure within marine populations mounts, it follows that kin selection may play a far greater role in the evolution of both behaviours and life histories of marine organisms than is presently appreciated.


2018 ◽  
Author(s):  
António M. M. Rodrigues

AbstractThe Wright-Fisher infinite island model and the neighbour-modulated approach to kin selection have enabled major advances in the understanding of social evolution in a demographic context. Due to structural assumptions, however, some important evolutionary problems are difficult to solve within the Wright-Fisher discrete-time framework. Although these major constraints are relaxed in the Moran continuous-time framework, a formal treatment of the mathematics of kin selection in continuous-time class-structured populations is still lacking. Here, I employ the neighbour-modulated approach to formalise key features of the kin selection theory in continuous-time infinite-island models. Next, I derive a general form of Hamilton’s rule to enable an inclusive fitness interpretation of social behaviours. I consider class-structure at the group and individual level, and I focus on conditional and unconditional phenotypes. I illustrate how the general theory can be applied to solve a wide range of biological problems. Finally, I show how a simple extension of the framework allows for the study of problems pertaining to the transmission of parental quality. I show that while inheritance of parental quality may either promote or inhibit selection on conditional helping behaviours, unconditional behaviours are invariant with respect to the fidelity of inheritance.


Author(s):  
James A.R. Marshall

This chapter examines which of the equivalent alternative partitions of fitness, including inclusive fitness and group fitness, can be interpreted as being subject to natural selection in a meaningful way. Inclusive fitness theory can deal with subtleties such as nonadditive fitness effects and conditionally expressed phenotypes. However, selection based on inclusive fitness gives equivalent predictions to other models of apparently different evolutionary processes, such as multilevel selection. The chapter considers how we can determine whether inclusive fitness really captures the essence of social evolution and whether inclusive fitness is really maximized by the action of selection, as suggested by William D. Hamilton. It also explains what heritability measures, and whether this makes sense biologically. Finally, it discusses the problem of classifying observed social behaviors in terms of their underlying evolutionary explanations.


2012 ◽  
Vol 367 (1600) ◽  
pp. 2314-2323 ◽  
Author(s):  
Tommaso Pizzari ◽  
Andy Gardner

The diversity of social interactions between sexual partners has long captivated biologists, and its evolution has been interpreted largely in terms of ‘direct fitness’ pay-offs to partners and their descendants. Inter-sexual interactions also have ‘indirect effects’ by affecting the fitness of relatives, with important consequences for inclusive fitness. However, inclusive fitness arguments have received limited consideration in this context, and definitions of ‘direct’ and ‘indirect’ fitness effects in this field are often inconsistent with those of inclusive fitness theory. Here, we use a sociobiology approach based on inclusive fitness theory to distinguish between direct and indirect fitness effects. We first consider direct effects: we review how competition leads to sexual conflict, and discuss the conditions under which repression of competition fosters sexual mutualism. We then clarify indirect effects, and show that greenbeard effects, kin recognition and population viscosity can all lead to episodes of indirect selection on sexual interactions creating potential for sexual altruism and spite. We argue that the integration of direct and indirect fitness effects within a sociobiology approach enables us to consider a more diverse spectrum of evolutionary outcomes of sexual interactions, and may help resolving current debates over sexual selection and sexual conflict.


Author(s):  
Jonathan Birch

This chapter provides an introduction to the book. Some brief background on the aims and history of social evolution theory is followed by a brief discussion of Ernst Mayr’s proximate-ultimate distinction. There follows a short overview of the book as a whole. Part I of the book ‘Foundations’, aims to construct a coherent picture of the conceptual structure of social evolution theory, a picture that distinguishes the different explanatory roles of three distinct conceptual innovations due to W. D. Hamilton that are often run together: Hamilton’s rule, kin selection, and inclusive fitness. Part II of the book, ‘Extensions’, turns to the ways in which recent expansions in the explanatory domain of social evolution theory have generated new conceptual challenges.


2017 ◽  
Author(s):  
D.B. Krupp

AbstractTheories of self-sacrifice ordinarily assume that actors will have larger fitness effects on recipients than on themselves. There are, however, conditions in which actors can pay costs that exceed the altruistic benefits they provide or the spiteful costs they impose. In a spatially structured population, I show that such “extraordinary” self-sacrifice evolves when actors use information about kinship and dispersal to maximize inclusive fitness. The result can be described by a simple rule: extraordinary self-sacrifice evolves when the actor’s neighbors are kin and the recipient’s neighbors are not.


Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


2014 ◽  
Vol 369 (1642) ◽  
pp. 20130365 ◽  
Author(s):  
Helen C. Leggett ◽  
Sam P. Brown ◽  
Sarah E. Reece

One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document