scholarly journals There is no fitness but fitness, and the lineage is its bearer

2016 ◽  
Vol 371 (1687) ◽  
pp. 20150085 ◽  
Author(s):  
Erol Akçay ◽  
Jeremy Van Cleve

Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory.

Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


2014 ◽  
Vol 369 (1642) ◽  
pp. 20130365 ◽  
Author(s):  
Helen C. Leggett ◽  
Sam P. Brown ◽  
Sarah E. Reece

One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.


Author(s):  
James A.R. Marshall

This book has examined the genesis, the logic, and the generality of social evolution theory. In particular, it has presented evolutionary explanations of the many social behaviors we observe in the natural world by showing that William D. Hamilton's inclusive fitness theory provides the necessary generalization of classical Darwin–Wallace–Fisher fitness. This concluding chapter discusses the limitations of the analyses presented in this book and assesses the empirical support for inclusive fitness theory, focusing on microbial altruism, help in cooperative breeders, reproductive restraint in eusocial species, and the evolution of eusociality and cooperative breeding. It also considers more advanced topics in social evolution theory, including sex allocation, genetic kin recognition, spite, and the evolution of organismality. Finally, it reviews theoretical approaches to studying social evolution other than replicator dynamics and the Price equation, such as population genetics, class-structured populations, and maximization approaches.


2011 ◽  
Vol 278 (1723) ◽  
pp. 3313-3320 ◽  
Author(s):  
Andrew F. G. Bourke

Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.


2014 ◽  
Vol 369 (1642) ◽  
pp. 20130565 ◽  
Author(s):  
Ben J. Hatchwell ◽  
Philippa R. Gullett ◽  
Mark J. Adams

Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist ( c ) are outweighed by the benefit to the recipient ( b ), weighted by the relatedness of altruist to recipient ( r ), i.e. Hamilton's rule rb > c . Despite its central importance in social evolution theory, there have been relatively few empirical tests of Hamilton's rule, and hardly any among cooperatively breeding vertebrates, leading some authors to question its utility. Here, we use data from a long-term study of cooperatively breeding long-tailed tits Aegithalos caudatus to examine whether helping behaviour satisfies Hamilton's condition for the evolution of altruism. We show that helpers are altruistic because they incur survival costs through the provision of alloparental care for offspring. However, they also accrue substantial benefits through increased survival of related breeders and offspring, and despite the low average relatedness of helpers to recipients, these benefits of helping outweigh the costs incurred. We conclude that Hamilton's rule for the evolution of altruistic helping behaviour is satisfied in this species.


Author(s):  
Heikki Helanterä

If the logic of natural selection is applied strictly at the level of individual production of offspring, sterile workers in insect societies are enigmatic. How can natural selection ever produce individuals that refrain from reproduction, and how are traits of such individuals that never produce offspring scrutinized and changed through natural selection? The solution to both questions is found in the family structures of insect societies. That is, the sterile helper individuals are evolutionary altruists that give up their own reproduction and instead are helping their kin reproduce and proliferate shared genes in the offspring of the fertile queen. Selection in such cases is not just a matter of individual’s direct reproduction, and instead of own offspring, the currency of the evolutionary success of sterile individuals is inclusive fitness. The concept of inclusive fitness and the process of kin selection are key to understanding the magnificent cooperation we see in insect societies, and reciprocally, insect societies are key case studies of inclusive fitness logic. In extreme cases, such as the highly advanced and sophisticated societies of ants, honeybees, and termites, the division of labor and interdependence of colony members is so complete, that it is justified to talk about a new level of evolutionary individuality. Such increases in the hierarchical complexity of life are called major transitions in evolution. We see adaptations of the colony, rather than individuals, in, e.g., their communication and group behaviors. The division of labor between morphologically differentiated queens and workers is analogous to germline-soma separation of a multicellular organism, justifying the term superorganism for the extreme cases of social lifestyle. Alongside these extreme cases, there is enormous diversity in the social lifestyles across social insect taxa, which provides a window into the balance of cooperation and conflict, and individual reproduction and helping others, in social evolution. Over the last decades, social insect research has been an area where the theoretical and empirical understanding have been developed hand in hand, together with examples of wonderful natural history, and has tremendously improved our understanding of evolution.


2011 ◽  
Vol 16 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Paweł Ostaszewski ◽  
Jerzy Tomasz Osiński

The purpose of the study was to test hypotheses regarding a form of social discounting in which the subjective value of a reward decreases as a function of the number of people it is shared with. Based on evolutionary theory, individuals’ social discounting rates were expected to depend on both reward amount and the type of relationship with the people with whom the reward would be shared. As predicted, smaller amounts were discounted less steeply than larger ones, and social discounting was steepest when sharing with strangers and shallowest when sharing with family. The effect of the type of social relationship is consistent with Hamilton’s inclusive fitness theory. The shallower discounting of smaller rewards may be adaptive when resources are limited; alternatively, this finding may be due to the degree of disappointment that is anticipated if the reward is unfairly shared, assuming that the disappointment increases with the size of the reward being withheld by the group.


Author(s):  
James A.R. Marshall

This book demonstrates the generality of inclusive fitness theory, with particular emphasis on its fundamental evolutionary logic. It presents the basic mathematical theory of natural selection and shows how inclusive fitness theory deals with more complicated social scenarios. Topics include the Price equation, Hamilton's rule, nonadditive interactions, conditional behaviors, heritability, and maximization of inclusive fitness. This chapter provides a brief historical introduction to the problem of apparent design in biology, evolutionary explanations of this, and in particular, evolutionary explanations of individual behaviors that appear designed to benefit not the individual themselves, but other members of their species. It examines how social behaviors can be shaped by natural selection and discusses the problem of providing an evolutionary explanation of self-sacrifice by individuals, altruism in group selection, and multilevel selection theory.


Sign in / Sign up

Export Citation Format

Share Document