scholarly journals Towards a psychophysics of interoceptive processes: the measurement of heartbeat detection

2016 ◽  
Vol 371 (1708) ◽  
pp. 20160015 ◽  
Author(s):  
Jasper Brener ◽  
Christopher Ring

It is difficult to collect objective evidence of interoception. Unlike exteroception, the effective stimuli for interoception are often unknown, and even when identifiable, they are difficult to control experimentally. Furthermore, direct stimulation of the interoceptors is seldom appropriate in human experimentation. Hence, non-invasive behavioural measures of accuracy in heartbeat detection have frequently been adopted to index interoceptive sensitivity. However, there has been little standardization and the two most popular methods for assessing heartbeat detection, heartbeat tracking and two alternative forced choice methods, appear to be biased and of questionable validity. These issues do not arise with other methods that are based on classical psychophysics and that enable subjects to indicate when during the cardiac cycle their heartbeat sensations occur. Not only are these classical methods highly reliable, but they also provide continuous unbiased measures of the temporal locations of heartbeat sensations and the precision with which these sensations are detected. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.

2017 ◽  
Vol 2 (2) ◽  

A method of rapid attenuation of symptoms of anxiety, panic and anger is described using interoception combined with stimulation of the third and fourth cranial nerves by the subject. The proposed method by which BabyGaze interrupts a neurological feedback loop via direct stimulation of the EdingherWestphal Nucleus (the rostral-most parasympathetic nucleus) in the brainstem is illustrated. Attenuation of interoceptive (physical) symptoms typically occurs in less than 5 minutes with associated elimination of psychological symptoms. Having learnt the method, it can be carried out by the patient without further therapeutic intervention. This method has been used in a Scottish General Practice now for over 12 months with associated reduction in prescribing and referral to mental health services.


2021 ◽  
Vol 9 (3) ◽  
pp. 24
Author(s):  
Brian Heubel ◽  
Anja Nohe

The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.


Author(s):  
Juan Luis RodrÍguez Hermosa ◽  
Myriam Calle ◽  
Ina Guerassimova ◽  
Baldomero FernÁndez ◽  
Víctor Javier Montero ◽  
...  

2021 ◽  
Author(s):  
Robert M. Hardwick ◽  
Amanda S. Therrien ◽  
Elise Lesage
Keyword(s):  

2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


1996 ◽  
Vol 115 (2) ◽  
pp. P94-P95
Author(s):  
Derek A. Jones ◽  
H. Alexander Arts ◽  
Steven M. Bierer ◽  
David J Anderson

2002 ◽  
Vol 97 (5) ◽  
pp. 1179-1183 ◽  
Author(s):  
Basar Atalay ◽  
Hayrunnisa Bolay ◽  
Turgay Dalkara ◽  
Figen Soylemezoglu ◽  
Kamil Oge ◽  
...  

Object. The goal of this study was to investigate whether stimulation of trigeminal afferents in the cornea could enhance cerebral blood flow (CBF) in rats after they have been subjected to experimental subarachnoid hemorrhage (SAH). Cerebral vasospasm following SAH may compromise CBF and increase the risks of morbidity and mortality. Currently, there is no effective treatment for SAH-induced vasospasm. Direct stimulation of the trigeminal nerve has been shown to dilate constricted cerebral arteries after SAH; however, a noninvasive method to activate this nerve would be preferable for human applications. The authors hypothesized that stimulation of free nerve endings of trigeminal sensory fibers in the face might be as effective as direct stimulation of the trigeminal nerve. Methods. Autologous blood obtained from the tail artery was injected into the cisterna magna of 10 rats. Forty-eight and 96 hours later (five rats each) trigeminal afferents were stimulated selectively by applying transcorneal biphasic pulses (1 msec, 3 mA, and 30 Hz), and CBF enhancements were detected using laser Doppler flowmetry in the territory of the middle cerebral artery. Stimulation-induced changes in cerebrovascular parameters were compared with similar parameters in sham-operated controls (six rats). Development of vasospasm was histologically verified in every rat with SAH. Corneal stimulation caused an increase in CBF and blood pressure and a net decrease in cerebrovascular resistance. There were no significant differences between groups for these changes. Conclusions. Data from the present study demonstrate that transcorneal stimulation of trigeminal nerve endings induces vasodilation and a robust increase in CBF. The vasodilatory response of cerebral vessels to trigeminal activation is retained after SAH-induced vasospasm.


Sign in / Sign up

Export Citation Format

Share Document