scholarly journals Not all sex ratios are equal: the Fisher condition, parental care and sexual selection

2017 ◽  
Vol 372 (1729) ◽  
pp. 20160312 ◽  
Author(s):  
Michael D. Jennions ◽  
Lutz Fromhage

The term ‘sex roles’ encapsulates male–female differences in mate searching, competitive traits that increase mating/fertilization opportunities, choosiness about mates and parental care. Theoretical models suggest that biased sex ratios drive the evolution of sex roles. To model sex role evolution, it is essential to note that in most sexually reproducing species (haplodiploid insects are an exception), each offspring has one father and one mother. Consequently, the total number of offspring produced by each sex is identical, so the mean number of offspring produced by individuals of each sex depends on the sex ratio (Fisher condition). Similarly, the total number of heterosexual matings is identical for each sex. On average, neither sex can mate nor breed more often when the sex ratio is even. But equally common in which sex ratio? The Fisher condition only applies to some reproductive measures (e.g. lifetime offspring production or matings) for certain sex ratios (e.g. operational or adult sex ratio; OSR, ASR). Here, we review recent models that clarify whether a biased OSR, ASR or sex ratio at maturation (MSR) have a causal or correlational relationship with the evolution of sex differences in parental care and competitive traits—two key components of sex roles. We suggest that it is more fruitful to understand the combined effect of the MSR and mortality rates while caring and competing than that of the ASR itself. In short, we argue that the ASR does not have a causal role in the evolution of parental care. We point out, however, that the ASR can be a cue for adaptive phenotypic plasticity in how each sex invests in parental care. This article is part of the themed issue ‘Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies’.

2017 ◽  
Vol 372 (1729) ◽  
pp. 20160321 ◽  
Author(s):  
Peter M. Kappeler

Theoretical models and empirical studies in various taxa have identified important links between variation in sex roles and the number of adult males and females (adult sex ratio (ASR)) in a population. In this review, I examine these relationships in non-human primates. Because most existing theoretical models of the evolution of sex roles focus on the evolutionary origins of sex-biased behaviour, they offer only a general scaffold for predicting variation in sex roles among and within species. I argue that studies examining sex role variation at these more specific levels need to take social organization into account to identify meaningful levels for the measurement of ASR and to account for the fact that ASR and sex roles mutually influence each other. Moreover, taxon-specific life-history traits can constrain sex role flexibility and impact the operational sex ratio (OSR) by specifying the minimum length of female time outs from reproduction. Using examples from the primate literature, I highlight practical problems in estimating ASR and OSR. I then argue that interspecific variation in the occurrence of indirect forms of paternal care might indeed be linked to variation in ASR. Some studies also indicate that female aggression and bonding, as well as components of inter-sexual relationships, are sensitive to variation in ASR. Thus, links between primate sex roles and sex ratios merit further study, and such studies could prompt the development of more specific theoretical models that make realistic assumptions about taxon-specific life history and social organization. This article is part of the themed issue ‘Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies’.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
András Liker ◽  
Robert P. Freckleton ◽  
Tamás Székely

2017 ◽  
Vol 372 (1729) ◽  
pp. 20160313 ◽  
Author(s):  
Sergio Ancona ◽  
Francisco V. Dénes ◽  
Oliver Krüger ◽  
Tamás Székely ◽  
Steven R. Beissinger

Adult sex ratio (ASR, the proportion of males in the adult population) is a central concept in population and evolutionary biology, and is also emerging as a major factor influencing mate choice, pair bonding and parental cooperation in both human and non-human societies. However, estimating ASR is fraught with difficulties stemming from the effects of spatial and temporal variation in the numbers of males and females, and detection/capture probabilities that differ between the sexes. Here, we critically evaluate methods for estimating ASR in wild animal populations, reviewing how recent statistical advances can be applied to handle some of these challenges. We review methods that directly account for detection differences between the sexes using counts of unmarked individuals (observed, trapped or killed) and counts of marked individuals using mark–recapture models. We review a third class of methods that do not directly sample the number of males and females, but instead estimate the sex ratio indirectly using relationships that emerge from demographic measures, such as survival, age structure, reproduction and assumed dynamics. We recommend that detection-based methods be used for estimating ASR in most situations, and point out that studies are needed that compare different ASR estimation methods and control for sex differences in dispersal. This article is part of the themed issue ‘Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies’.


2017 ◽  
Vol 372 (1729) ◽  
pp. 20160325 ◽  
Author(s):  
Veronika Bókony ◽  
Szilvia Kövér ◽  
Edina Nemesházi ◽  
András Liker ◽  
Tamás Székely

Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks. This article is part of the themed issue ‘Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies’.


2003 ◽  
Vol 81 (8) ◽  
pp. 1306-1311 ◽  
Author(s):  
Monica L Bond ◽  
Jerry O Wolff ◽  
Sven Krackow

We tested predictions associated with three widely used hypotheses for facultative sex-ratio adjustment of vertebrates using eight enclosed populations of gray-tailed voles, Microtus canicaudus. These were (i) the population sex ratio hypothesis, which predicts that recruitment sex ratios should oppose adult sex-ratio skews, (ii) the local resource competition hypothesis, which predicts female-biased recruitment at low adult population density and male-biased recruitment at high population density, and (iii) the first cohort advantage hypothesis, which predicts that recruitment sex ratios should be female biased in the spring and male biased in the autumn. We monitored naturally increasing population densities with approximately equal adult sex ratios through the spring and summer and manipulated adult sex ratios in the autumn and measured subsequent sex ratios of recruits. We did not observe any significant sex-ratio adjustment in response to adult sex ratio or high population density; we did detect an influence of time within the breeding season, with more female offspring observed in the spring and more male offspring observed in the autumn. Significant seasonal increases in recruitment sex ratios indicate the capacity of female gray-tailed voles to manipulate their offspring sex ratios and suggest seasonal variation in the relative reproductive value of male and female offspring to be a regular phenomenon.


2016 ◽  
Vol 3 (10) ◽  
pp. 160463 ◽  
Author(s):  
Wolfgang Goymann ◽  
Ignas Safari ◽  
Christina Muck ◽  
Ingrid Schwabl

The decision to provide parental care is often associated with trade-offs, because resources allocated to parental care typically cannot be invested in self-maintenance or mating. In most animals, females provide more parental care than males, but the reason for this pattern is still debated in evolutionary ecology. To better understand sex differences in parental care and its consequences, we need to study closely related species where the sexes differ in offspring care. We investigated parental care in relation to offspring growth in two closely related coucal species that fundamentally differ in sex roles and parental care, but live in the same food-rich habitat with a benign climate and have a similar breeding phenology. Incubation patterns differed and uniparental male black coucals fed their offspring two times more often than female and male white-browed coucals combined. Also, white-browed coucals had more ‘off-times’ than male black coucals, during which they perched and preened. However, these differences in parental care were not reflected in offspring growth, probably because white-browed coucals fed their nestlings a larger proportion of frogs than insects. A food-rich habitat with a benign climate may be a necessary, but—perhaps unsurprisingly—is not a sufficient factor for the evolution of uniparental care. In combination with previous results (Goymann et al . 2015 J. Evol. Biol . 28 , 1335–1353 ( doi:10.1111/jeb.12657 )), these data suggest that white-browed coucals may cooperate in parental care, because they lack opportunities to become polygamous rather than because both parents were needed to successfully raise all offspring. Our case study supports recent theory suggesting that permissive environmental conditions in combination with a particular life history may induce sexual selection in females. A positive feedback loop among sexual selection, body size and adult sex-ratio may then stabilize reversed sex roles in competition and parental care.


2017 ◽  
Vol 132 ◽  
pp. 181-188 ◽  
Author(s):  
Márta E. Rosa ◽  
Zoltán Barta ◽  
Attila Fülöp ◽  
Tamás Székely ◽  
András Kosztolányi

2020 ◽  
Author(s):  
Jessica M. Judson ◽  
Luke A. Hoekstra ◽  
Kaitlyn G. Holden ◽  
Fredric J. Janzen

ABSTRACTSexual selection is often assumed to elicit sexually dimorphic traits. However, most work on this assumption in tetrapod vertebrates has focused on birds. In this field experiment, we assessed relationships between both sexually dimorphic (body size, claw length) and non-dimorphic traits (forelimb stripe color, baseline corticosterone concentrations) and reproductive success in adult painted turtles to explicate the roles of these phenotypes in mate choice and the evolution of sexual dimorphism. We also modified adult sex ratios in experimental ponds to elucidate the role of biased sex ratios on reproductive success, which is a timely test of the potential threat of biased sex ratios on population persistence in a species with temperature-dependent sex determination. We found no strong influence of male phenotypes on male siring success, but female body size and baseline corticosterone concentrations predicted female clutch sizes. We find weak evidence that adult sex ratio influences male siring success, with a male-biased sex ratio producing lower male siring success than a female-biased sex ratio. This study offers evidence that female mate choice may not be an important selective force on male phenotypes, but that instead selection occurs on female phenotypes, particularly body size and corticosterone concentrations. Further, biased adult sex ratios can influence reproductive success of both sexes. Finally, the use of Kompetitive Allele Specific PCR (KASP) was highly successful in parentage analysis, which adds reptiles to the growing list of taxa successfully genotyped with this new technology.Lay SummaryFemale painted turtles aren’t choosy about traits of their mates. In a field experiment, we find that male traits do not predict male fitness, but key female traits (body size and stress levels) do predict female reproductive success. Further, we find weak evidence that adult sex ratio influences individual fitness in this species with environmental sex determination. Ultimately, we reject the long-assumed importance of female mate choice in this freshwater turtle.


Sign in / Sign up

Export Citation Format

Share Document