scholarly journals Comparative cognition of number and space: the case of geometry and of the mental number line

2018 ◽  
Vol 373 (1740) ◽  
pp. 20170120 ◽  
Author(s):  
Giorgio Vallortigara

Evidence is discussed about the use of geometric information for spatial orientation and the association between space and numbers in non-human animals. A variety of vertebrate species can reorient using simple Euclidian geometry of the environmental surface layout, i.e. in accord with metric and sense (right/left) relationships among extended surfaces. There seems to be a primacy of geometric over non-geometric information in spatial reorientation and, possibly, innate encoding of the sense of direction. The hippocampal formation plays a key role in geometry-based reorientation in mammals, birds, amphibians and fish. Although some invertebrate species show similar behaviours, it is unclear whether the underlying mechanisms are the same as in vertebrates. As to the links between space and number representations, a disposition to associate numerical magnitudes onto a left-to-right-oriented mental number line appears to exist independently of socio-cultural factors, and can be observed in animals with very little numerical experience, such as newborn chicks and human infants. Such evidence supports a nativistic foundation of number–space association. Some speculation about the possible underlying mechanisms is provided together with consideration on the difficulties inherent to any comparison among species of different taxonomic groups. This article is part of a discussion meeting issue ‘The origins of numerical abilities'.

2012 ◽  
Author(s):  
David Landy ◽  
Zachary J. Davis ◽  
Brian M. Guay ◽  
Megan L. Delaunay ◽  
Arthur Charlesworth ◽  
...  

2021 ◽  
pp. 174702182110087
Author(s):  
Lauren Aulet ◽  
Sami R Yousif ◽  
Stella Lourenco

Multiple tasks have been used to demonstrate the relation between numbers and space. The classic interpretation of these directional spatial-numerical associations (d-SNAs) is that they are the product of a mental number line (MNL), in which numerical magnitude is intrinsically associated with spatial position. The alternative account is that d-SNAs reflect task demands, such as explicit numerical judgments and/or categorical responses. In the novel ‘Where was The Number?’ task, no explicit numerical judgments were made. Participants were simply required to reproduce the location of a numeral within a rectangular space. Using a between-subject design, we found that numbers, but not letters, biased participants’ responses along the horizontal dimension, such that larger numbers were placed more rightward than smaller numbers, even when participants completed a concurrent verbal working memory task. These findings are consistent with the MNL account, such that numbers specifically are inherently left-to-right oriented in Western participants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


2012 ◽  
Vol 25 (0) ◽  
pp. 222 ◽  
Author(s):  
Michael J. Proulx ◽  
Achille Pasqualotto ◽  
Shuichiro Taya

The topographic representation of space interacts with the mental representation of number. Evidence for such number–space relations have been reported in both synaesthetic and non-synaesthetic participants. Thus far most studies have only examined related effects in sighted participants. For example, the mental number line increases in magnitude from left to right in sighted individuals (Loetscher et al., 2008, Curr. Biol.). What is unclear is whether this association arises from innate mechanisms or requires visual experience early in life to develop in this way. Here we investigated the role of visual experience for the left to right spatial numerical association using a random number generation task in congenitally blind, late blind, and blindfolded sighted participants. Participants orally generated numbers randomly whilst turning their head to the left and right. Sighted participants generated smaller numbers when they turned their head to the left than to the right, consistent with past results. In contrast, congenitally blind participants generated smaller numbers when they turned their head to the right than to the left, exhibiting the opposite effect. The results of the late blind participants showed an intermediate profile between that of the sighted and congenitally blind participants. Visual experience early in life is therefore necessary for the development of the spatial numerical association of the mental number line.


2018 ◽  
Vol 72 (7) ◽  
pp. 1732-1740 ◽  
Author(s):  
Matthias Hartmann ◽  
Martin H Fischer ◽  
Fred W Mast

A growing body of research shows that the human brain acts differently when performing a task together with another person than when performing the same task alone. In this study, we investigated the influence of a co-actor on numerical cognition using a joint random number generation (RNG) task. We found that participants generated relatively smaller numbers when they were located to the left (vs. right) of a co-actor (Experiment 1), as if the two individuals shared a mental number line and predominantly selected numbers corresponding to their relative body position. Moreover, the mere presence of another person on the left or right side or the processing of numbers from loudspeaker on the left or right side had no influence on the magnitude of generated numbers (Experiment 2), suggesting that a bias in RNG only emerged during interpersonal interactions. Interestingly, the effect of relative body position on RNG was driven by participants with high trait empathic concern towards others, pointing towards a mediating role of feelings of sympathy for joint compatibility effects. Finally, the spatial bias emerged only after the co-actors swapped their spatial position, suggesting that joint spatial representations are constructed only after the spatial reference frame became salient. In contrast to previous studies, our findings cannot be explained by action co-representation because the consecutive production of numbers does not involve conflict at the motor response level. Our results therefore suggest that spatial reference coding, rather than motor mirroring, can determine joint compatibility effects. Our results demonstrate how physical properties of interpersonal situations, such as the relative body position, shape seemingly abstract cognition.


2021 ◽  
Author(s):  
Lauren S Aulet ◽  
Sami Ryan Yousif ◽  
Stella F. Lourenco

Multiple tasks have been used to demonstrate the relation between numbers and space. The classic interpretation of these directional spatial-numerical associations (d-SNAs) is that they are the product of a mental number line (MNL), in which numerical magnitude is intrinsically associated with spatial position. The alternative account is that d-SNAs reflect task demands, such as explicit numerical judgments and/or categorical responses. In the novel ‘Where was The Number?’ task, no explicit numerical judgments were made. Participants were simply required to reproduce the location of a numeral within a rectangular space. Using a between-subject design, we found that numbers, but not letters, biased participants’ responses along the horizontal dimension, such that larger numbers were placed more rightward than smaller numbers, even when participants completed a concurrent verbal working memory task. These findings are consistent with the MNL account, such that numbers specifically are inherently left-to-right oriented in Western participants.


2018 ◽  
Vol 12 ◽  
Author(s):  
Lap-Yan Lo ◽  
Cheuk-Yu Tsang

An object located in the centre position is believed to be the most attended and well remembered, which increases its likelihood of being chosen (i.e., centrality preference). However, the literature has yielded inconsistent evidence. With the support of an eye-tracking technique, this study tried to provide another means of examining the relationship between preference and attention. Thirty undergraduates were asked to choose one of five similar items presented on a horizontal line. The findings on eye fixation points and looking duration positively related to the probability of an item being chosen as the preferred item. Yet performance in a recall test revealed an independence between preference and remembering. Furthermore, an unexpectedly large proportion of the participants also preferred the items on the leftmost side of the array. The mental number line and social norms, together with centrality preference, were used to provide an explanation of our implicit preference in decision making.


Cognition ◽  
2008 ◽  
Vol 106 (3) ◽  
pp. 1221-1247 ◽  
Author(s):  
Véronique Izard ◽  
Stanislas Dehaene

2019 ◽  
Vol 81 (3) ◽  
pp. 614-620
Author(s):  
Dennis Reike ◽  
Wolf Schwarz

Sign in / Sign up

Export Citation Format

Share Document