scholarly journals Coordination between patterning and morphogenesis ensures robustness during mouse development

2020 ◽  
Vol 375 (1809) ◽  
pp. 20190562 ◽  
Author(s):  
Néstor Saiz ◽  
Anna-Katerina Hadjantonakis

The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.

Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 737-744 ◽  
Author(s):  
F.F. Del Amo ◽  
D.E. Smith ◽  
P.J. Swiatek ◽  
M. Gendron-Maguire ◽  
R.J. Greenspan ◽  
...  

The Notch gene of Drosophila encodes a large transmembrane protein involved in cell-cell interactions and cell fate decisions in the Drosophila embryo. To determine if a gene homologous to Drosophila Notch plays a role in early mouse development, we screened a mouse embryo cDNA library with probes from the Xenopus Notch homolog, Xotch. A partial cDNA clone encoding the mouse Notch homolog, which we have termed Motch, was used to analyze expression of the Motch gene. Motch transcripts were detected in a wide variety of adult tissues, which included derivatives of all three germ layers. Differentiation of P19 embryonal carcinoma cells into neuronal cell types resulted in increased expression of Motch RNA. In the postimplantation mouse embryo Motch transcripts were first detected in mesoderm at 7.5 days post coitum (dpc). By 8.5 dpc, transcript levels were highest in presomitic mesoderm, mesenchyme and endothelial cells, while much lower levels were detected in neuroepithelium. In contrast, at 9.5 dpc, neuroepithelium was a major site of Motch expression. Transcripts were also abundant in cell types derived from neural crest. These data suggest that the Motch gene plays multiple roles in patterning and differentiation of the early postimplantation mouse embryo.


2014 ◽  
Vol 31 (7) ◽  
pp. 1060-1066 ◽  
Author(s):  
Haifen Chen ◽  
Jing Guo ◽  
Shital K. Mishra ◽  
Paul Robson ◽  
Mahesan Niranjan ◽  
...  

2018 ◽  
Author(s):  
Anna D. Senft ◽  
Elizabeth K. Bikoff ◽  
Elizabeth J. Robertson ◽  
Ita Costello

AbstractThe essential roles played by Nodal and Bmp signalling during early mouse development have been extensively documented. Here we used conditional deletion strategies to investigate functional contributions made by Nodal, Bmp and Smad downstream effectors during primordial germ cell (PGC) development. We demonstrate that Nodal and its target gene Eomes provide early instructions during formation of the PGC lineage. We discovered that Smad2 inactivation in the visceral endoderm results in increased numbers of PGCs due to an expansion of the PGC niche. Smad1 is required for specification, whereas in contrast Smad4 controls the maintenance and migration of PGCs. Importantly we found that beside Blimp1, down-regulated phosphoSmad159 levels also distinguishes PGCs from their somatic neighbours so that emerging PGCs become refractory to Bmp signalling that otherwise promotes mesodermal development in the posterior epiblast. Thus balanced Nodal/Bmp signalling cues regulate germ cell versus somatic cell fate decisions in the early posterior epiblast.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sergio Menchero ◽  
Isabel Rollan ◽  
Antonio Lopez-Izquierdo ◽  
Maria Jose Andreu ◽  
Julio Sainz de Aja ◽  
...  

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jan J Zylicz ◽  
Sabine Dietmann ◽  
Ufuk Günesdogan ◽  
Jamie A Hackett ◽  
Delphine Cougot ◽  
...  

Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells.


2018 ◽  
Author(s):  
Sergio Menchero ◽  
Antonio Lopez-Izquierdo ◽  
Isabel Rollan ◽  
Julio Sainz de Aja ◽  
Maria Jose Andreu ◽  
...  

AbstractThe Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.


2021 ◽  
Vol 7 (1) ◽  
pp. 37
Author(s):  
Mohammad N. Qasim ◽  
Ashley Valle Arevalo ◽  
Clarissa J. Nobile ◽  
Aaron D. Hernday

Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as “white” and “opaque”. These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively “simple” model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.


2018 ◽  
Vol 218 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Sabrina Ladstätter ◽  
Kikuë Tachibana

The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1135-1144 ◽  
Author(s):  
T.P. Fleming ◽  
M. Hay ◽  
Q. Javed ◽  
S. Citi

The molecular maturation of the tight junction in the mouse early embryo has been investigated by monitoring the distribution of cingulin, a 140 × 10(3) M(r) peripheral (cytoplasmic) membrane constituent of the junction, at different stages of development and in different experimental situations. Although tight junction formation does not begin until compaction at the 8-cell stage, cingulin is detectable in oocytes and all stages of cleavage, a factor consistent with our biochemical analysis of cingulin expression (Javed et al., 1992, Development 117, 1145–1151). Using synchronised egg and embryo stages and isolated cell clusters, we have identified three sites where cingulin is localised, the cytocortex, punctate cytoplasmic foci and tight junctions themselves. Cytocortical cingulin is present at the cumulus-oocyte contact site (both cell types), in unfertilised and fertilised eggs and in cleavage stages up to 16-cell morulae, particularly at microvillous domains on the embryo outer surface (eg. apical poles at compaction). Embryo manipulation experiments indicate that cortical cingulin is labile and dependent upon cell interactions and therefore is not merely an inheritance from the egg. Cingulin cytoplasmic foci are evident only in outer cells (prospective trophectoderm) from the 32-cell stage, just prior to cavitation, and decline from approx. 8 hours after cavitation has initiated. The appearance of these foci is insensitive to cycloheximide treatment and they colocalise with apically derived endocytic vesicles visualised by FITC-dextran, indicating that the foci represent the degradation of cytocortical cingulin by endocytic turnover. Cingulin is detectable at the tight junction site between blastomeres usually from the 16-cell stage, although earlier assembly occurs in a minority (up to 20%) of specimens. Cingulin assembly at the tight junction is sensitive to cycloheximide and is identifiable approx. 10 hours after cell adhesion is initiated and ZO-1 protein assembles. Collectively, our results indicate that (i) cingulin from nonjunctional sites does not contribute to tight junction assembly and (ii) the molecular maturation of the junction appears to occur progressively over at least two cell cycles.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3865-3876
Author(s):  
M.S. Rones ◽  
K.A. McLaughlin ◽  
M. Raffin ◽  
M. Mercola

Notch signaling mediates numerous developmental cell fate decisions in organisms ranging from flies to humans, resulting in the generation of multiple cell types from equipotential precursors. In this paper, we present evidence that activation of Notch by its ligand Serrate apportions myogenic and non-myogenic cell fates within the early Xenopus heart field. The crescent-shaped field of heart mesoderm is specified initially as cardiomyogenic. While the ventral region of the field forms the myocardial tube, the dorsolateral portions lose myogenic potency and form the dorsal mesocardium and pericardial roof (Raffin, M., Leong, L. M., Rones, M. S., Sparrow, D., Mohun, T. and Mercola, M. (2000) Dev. Biol., 218, 326–340). The local interactions that establish or maintain the distinct myocardial and non-myocardial domains have never been described. Here we show that Xenopus Notch1 (Xotch) and Serrate1 are expressed in overlapping patterns in the early heart field. Conditional activation or inhibition of the Notch pathway with inducible dominant negative or active forms of the RBP-J/Suppressor of Hairless [Su(H)] transcription factor indicated that activation of Notch feeds back on Serrate1 gene expression to localize transcripts more dorsolaterally than those of Notch1, with overlap in the region of the developing mesocardium. Moreover, Notch pathway activation decreased myocardial gene expression and increased expression of a marker of the mesocardium and pericardial roof, whereas inhibition of Notch signaling had the opposite effect. Activation or inhibition of Notch also regulated contribution of individual cells to the myocardium. Importantly, expression of Nkx2. 5 and Gata4 remained largely unaffected, indicating that Notch signaling functions downstream of heart field specification. We conclude that Notch signaling through Su(H) suppresses cardiomyogenesis and that this activity is essential for the correct specification of myocardial and non-myocardial cell fates.


Sign in / Sign up

Export Citation Format

Share Document