scholarly journals Sperm competition in squamate reptiles

2020 ◽  
Vol 375 (1813) ◽  
pp. 20200079
Author(s):  
Christopher R. Friesen ◽  
Ariel F. Kahrl ◽  
Mats Olsson

Multiple paternity is ubiquitous within the polyphyletic group called ‘reptiles', especially within the lizards and snakes. Therefore, the probability of sperm competition occurring, and being intense, is high. Squamates exhibit a diversity of tactics to ensure fertilization success in the face of sperm competition. The duration of female sperm storage, which can be many months and even years in some species, remains an enigma. Here, we emphasize some mechanisms that might affect patterns of paternity, the source and function of ejaculates and features of the female reproductive tract that may aid in long-term sperm storage. In doing so, we present a new analysis of the relationship between sperm size, the strength of sperm competition and the duration of female sperm storage. Lizards and snakes are a diverse group that has provided many excellent models for the study of an array of life-history strategies. However, when it comes to postcopulatory sexual selection, there is much left to discover. This article is part of the theme issue ‘Fifty years of sperm competition'.

2020 ◽  
Vol 375 (1813) ◽  
pp. 20200071 ◽  
Author(s):  
Martin D. Garlovsky ◽  
Leeban H. Yusuf ◽  
Michael G. Ritchie ◽  
Rhonda R. Snook

Postcopulatory sexual selection can generate evolutionary arms races between the sexes resulting in the rapid coevolution of reproductive phenotypes. As traits affecting fertilization success diverge between populations, postmating prezygotic (PMPZ) barriers to gene flow may evolve. Conspecific sperm precedence is a form of PMPZ isolation thought to evolve early during speciation yet has mostly been studied between species. Here , we show conpopulation sperm precedence (CpSP) between Drosophila montana populations. Using Pool-seq genomic data we estimate divergence times and ask whether PMPZ isolation evolved in the face of gene flow. We find models incorporating gene flow fit the data best indicating populations experienced considerable gene flow during divergence. We find CpSP is asymmetric and mirrors asymmetry in non-competitive PMPZ isolation, suggesting these phenomena have a shared mechanism. However, we show asymmetry is unrelated to the strength of postcopulatory sexual selection acting within populations. We tested whether overlapping foreign and coevolved ejaculates within the female reproductive tract altered fertilization success but found no effect. Our results show that neither time since divergence nor sperm competitiveness predicts the strength of PMPZ isolation. We suggest that instead cryptic female choice or mutation-order divergence may drive divergence of postcopulatory phenotypes resulting in PMPZ isolation. This article is part of the theme issue ‘Fifty years of sperm competition’.


Author(s):  
Patricia L.R. Brennan ◽  
Dara N. Orbach

The field of post-copulatory sexual selection investigates how female and male adaptations have evolved to influence the fertilization of eggs while optimizing fitness during and after copulation, when females mate with multiple males. When females are polyandrous (one female mates with multiple males), they may optimize their mating rate and control the outcome of mating interactions to acquire direct and indirect benefits. Polyandry may also favor the evolution of male traits that offer an advantage in post-copulatory male-male sperm competition. Sperm competition occurs when the sperm, seminal fluid, and/or genitalia of one male directly impacts the outcome of fertilization success of a rival male. When a female mates with multiple males, she may use information from a number of traits to choose who will sire her offspring. This cryptic female choice (CFC) to bias paternity can be based on behavioral, physiological, and morphological criteria (e.g., copulatory courtship, volume and/or composition of seminal fluid, shape of grasping appendages). Because male fitness interests are rarely perfectly aligned with female fitness interests, sexual conflict over mating and fertilization commonly occur during copulatory and post-copulatory interactions. Post-copulatory interactions inherently involve close associations between female and male reproductive characteristics, which in many species potentially include sperm storage and sperm movement inside the female reproductive tract, and highlight the intricate coevolution between the sexes. This coevolution is also common in genital morphology. The great diversity of genitalia among species is attributed to sexual selection. The evolution of genital attributes that allow females to maintain reproductive autonomy over paternity via cryptic female choice or that prevent male manipulation and sexual control via sexually antagonistic coevolution have been well documented. Additionally, cases where genitalia evolve through intrasexual competition are well known. Another important area of study in post-copulatory sexual selection is the examination of trade-offs between investments in pre-copulatory and post-copulatory traits, since organisms have limited energetic resources to allocate to reproduction, and securing both mating and fertilization is essential for reproductive success.


Behaviour ◽  
2006 ◽  
Vol 143 (5) ◽  
pp. 643-658 ◽  
Author(s):  
Ludovic Arnaud ◽  
Giorgina Bernasconi ◽  
Yves Brostaux ◽  
Eric P. Meyer

AbstractIn polyandrous insects, postcopulatory sexual selection is a pervasive evolutionary force favouring male and female traits that allow control of offspring paternity. Males may influence paternity through adaptations for sperm competition, and females through adaptations facilitating cryptic female choice. Yet, the mechanisms are often complex, involving behaviour, physiology or morphology, and they are difficult to identify. In red flour beetles (Tribolium castaneum), paternity varies widely, and evidence suggests that both male and female traits influence the outcome of sperm competition. To test the role of spermathecal morphology and of sperm storage processes on the outcome of sperm competition, we mated each of 26 virgin females with two males, one of which carrying a phenotypic marker to assign offspring paternity. We manipulated the interval between mating with the first and the second male, to create different conditions of sperm storage (overlapping and non-overlapping) in the female reproductive tract. To investigate the role of sperm storage more closely, we examined the relationship between paternity and spermathecal morphology in a subset of 14 experimental females. In addition, we also characterized variation in spermathecal morphology in three different strains, wildtype, Chicago black and Reindeer. No significant influence of the intermating interval was found on the paternity of the focal male, although the direction of the difference was in the expected direction of higher last male paternity for longer intervals. Moreover, paternity was not significantly associated with spermathecal morphology, although spermathecal volume, complexity, and tubule width varied significantly and substantially among individuals in all investigated strains.


2017 ◽  
Vol 284 (1860) ◽  
pp. 20171032 ◽  
Author(s):  
Nicola Hemmings ◽  
Tim Birkhead

When females mate promiscuously, female sperm storage provides scope to bias the fertilization success towards particular males via the non-random acceptance and utilization of sperm. The difficulties observing post-copulatory processes within the female reproductive tract mean that the mechanisms underlying cryptic female choice remain poorly understood. Here, we use zebra finches Taeniopygia guttata , selected for divergent sperm lengths, combined with a novel technique for isolating and extracting sperm from avian sperm storage tubules (SSTs), to test the hypothesis that sperm from separate ejaculates are stored differentially by female birds. We show that sperm from different inseminations enter different SSTs in the female reproductive tract, resulting in almost complete segregation of the sperm of competing males. We propose that non-random acceptance of sperm into SSTs, reflected in this case by sperm phenotype, provides a mechanism by which long sperm enjoy enhanced fertilization success in zebra finches.


Author(s):  
Zachariah Wylde ◽  
Angela Crean ◽  
Russell Bonduriansky

Abstract Ejaculate traits can be sexually selected and often exhibit heightened condition-dependence. However, the influence of sperm competition risk in tandem with condition-dependent ejaculate allocation strategies is relatively unstudied. Because ejaculates are costly to produce, high-condition males may be expected to invest more in ejaculates when sperm competition risk is greater. We examined the condition-dependence of ejaculate size by manipulating nutrient concentration in the juvenile (larval) diet of the neriid fly Telostylinus angusticollis. Using a fully factorial design we also examined the effects of perceived sperm competition risk (manipulated by allowing males to mate first or second) on the quantity of ejaculate transferred and stored in the three spermathecae of the female reproductive tract. To differentiate male ejaculates, we fed males nontoxic rhodamine fluorophores (which bind to proteins in the body) prior to mating, labeling their sperm red or green. We found that high-condition males initiated mating more quickly and, when mating second, transferred more ejaculate to both of the female’s posterior spermathecae. This suggests that males allocate ejaculates strategically, with high-condition males elevating their ejaculate investment only when facing sperm competition. More broadly, our findings suggest that ejaculate allocation strategies can incorporate variation in both condition and perceived risk of sperm competition.


2018 ◽  
Vol 19 (12) ◽  
pp. 4097 ◽  
Author(s):  
Karl Kerns ◽  
Michal Zigo ◽  
Peter Sutovsky

The importance of zinc for male fertility only emerged recently, being propelled in part by consumer interest in nutritional supplements containing ionic trace minerals. Here, we review the properties, biological roles and cellular mechanisms that are relevant to zinc function in the male reproductive system, survey available peer-reviewed data on nutritional zinc supplementation for fertility improvement in livestock animals and infertility therapy in men, and discuss the recently discovered signaling pathways involving zinc in sperm maturation and fertilization. Emphasis is on the zinc-interacting sperm proteome and its involvement in the regulation of sperm structure and function, from spermatogenesis and epididymal sperm maturation to sperm interactions with the female reproductive tract, capacitation, fertilization, and embryo development. Merits of dietary zinc supplementation and zinc inclusion into semen processing media are considered with livestock artificial insemination (AI) and human assisted reproductive therapy (ART) in mind. Collectively, the currently available data underline the importance of zinc ions for male fertility, which could be harnessed to improve human reproductive health and reproductive efficiency in agriculturally important livestock species. Further research will advance the field of sperm and fertilization biology, provide new research tools, and ultimately optimize semen processing procedures for human infertility therapy and livestock AI.


2004 ◽  
Vol 16 (4) ◽  
pp. 447 ◽  
Author(s):  
Lindsay Gillan ◽  
W. M. Chis Maxwell ◽  
Gareth Evans

Many years of research have been devoted to improving the fertility of preserved semen of small ruminants. There have been few significant advances in preservation in recent times, but considerable knowledge has been gained on the effect of preservation on the structure and function of spermatozoa. It has become evident that preservation greatly affects many sperm attributes, such as motility, respiratory activity, membrane status and DNA quality. Consequently, viability is reduced, transport in the female reproductive tract is inhibited, the timing of fertilisation is altered and embryo development is affected following insemination of preserved, compared to fresh spermatozoa. A greater understanding of their functional condition may lead to the development of methods of preventing these alterations or to improved methods of using the preserved spermatozoa for artificial insemination in their altered state.


Sign in / Sign up

Export Citation Format

Share Document