scholarly journals A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag

2001 ◽  
Vol 82 (9) ◽  
pp. 2279-2287 ◽  
Author(s):  
Jeffrey M. Slack ◽  
Edward M. Dougherty ◽  
Susan D. Lawrence

The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) protein p74 is associated with the occlusion-derived virus (ODV) envelope. p74 is essential for oral infectivity of ODV and has been proposed to play a role in midgut attachment and/or fusion. In this study, p74 protein was expressed in-frame with green fluorescent protein (GFP) to create a p74–GFP chimera. The C-terminal GFP portion of the chimera facilitated visualization of the trafficking of p74 in baculovirus-infected Spodoptera frugiperda (Sf-9) cells. p74–GFP chimeric proteins localized in the intranuclear ring zone of the nucleus and were found to co-precipitate with the microvesicle fraction of cell lysates. A series of truncations of p74 was expressed as p74–GFP chimeras in recombinant baculoviruses. When C-terminal region S580–F645 was deleted from p74, p74–GFP chimera localization became non-specific and chimeras became soluble. p74 region S580–F645 directed GFP to the intranuclear ring zone in a similar pattern to full-length p74. The hydrophobic C terminus of p74 plays a role in protein localization and possibly in transmembrane anchoring and insertion.

2009 ◽  
Vol 90 (6) ◽  
pp. 1499-1504 ◽  
Author(s):  
Ian-Ling Yu ◽  
Doug Bray ◽  
Ying-Chu Lin ◽  
Oliver Lung

Two envelope fusion protein gene homologues have been identified in the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV GP64 protein is fusogenic and essential for propagation and pathogenicity. The F homologue (Ac23) is not essential, is fusion-incompetent in standard assays, but contributes to faster host death. Here, we show that occlusion bodies (OBs) from Ac23null mutants and control viruses do not differ significantly in size and the number of occlusion-derived virions (ODVs) contained; however, Ac23null OBs had a much higher percentage of ODVs with a single nucleocapsid (44.6 %) than the near-isogenic control (11.3 %). Infection of Sf9 cells with Ac23–green fluorescent protein (gfp)-expressing recombinant viruses showed Ac23–gfp fluorescence overlapping perinuclear DAPI staining at later times, a pattern not observed with GP64. These results suggest that F proteins have evolved functions beyond envelope fusion and play a different role from that of GP64 in viruses that contain both proteins.


2000 ◽  
Vol 74 (23) ◽  
pp. 11339-11346 ◽  
Author(s):  
Vitaly Boyko ◽  
Jessica van der Laak ◽  
Jacqueline Ferralli ◽  
Elena Suslova ◽  
Myoung-Ok Kwon ◽  
...  

ABSTRACT Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.


2009 ◽  
Vol 9 (1) ◽  
pp. 224-226 ◽  
Author(s):  
Chengda Zhang ◽  
James B. Konopka

ABSTRACT Fusions to the green fluorescent protein (GFP) are an effective way to monitor protein localization. However, altered codon usage in Candida species has delayed implementation of new variants. Examination of three new GFP variants in Candida albicans showed that one has higher signal intensity and increased resistance to photobleaching.


2000 ◽  
Vol 11 (10) ◽  
pp. 3469-3484 ◽  
Author(s):  
Jean Monnat ◽  
Eva M. Neuhaus ◽  
Marius S. Pop ◽  
David M. Ferrari ◽  
Barbara Kramer ◽  
...  

Localization of soluble endoplasmic reticulum (ER) resident proteins is likely achieved by the complementary action of retrieval and retention mechanisms. Whereas the machinery involving the H/KDEL and related retrieval signals in targeting escapees back to the ER is well characterized, other mechanisms including retention are still poorly understood. We have identified a protein disulfide isomerase (Dd-PDI) lacking the HDEL retrieval signal normally found at the C terminus of ER residents in Dictyostelium discoideum. Here we demonstrate that its 57 residue C-terminal domain is necessary for intracellular retention of Dd-PDI and sufficient to localize a green fluorescent protein (GFP) chimera to the ER, especially to the nuclear envelope. Dd-PDI and GFP-PDI57 are recovered in similar cation-dependent complexes. The overexpression of GFP-PDI57 leads to disruption of endogenous PDI complexes and induces the secretion of PDI, whereas overexpression of a GFP-HDEL chimera induces the secretion of endogenous calreticulin, revealing the presence of two independent and saturable mechanisms. Finally, low-level expression of Dd-PDI but not of PDI truncated of its 57 C-terminal residues complements the otherwise lethal yeast TRG1/PDI1 null mutation, demonstrating functional disulfide isomerase activity and ER localization. Altogether, these results indicate that the PDI57 peptide contains ER localization determinants recognized by a conserved machinery present in D. discoideum and Saccharomyces cerevisiae.


2014 ◽  
Vol 369 (1633) ◽  
pp. 20130145 ◽  
Author(s):  
Sadegh Nabavi ◽  
Rocky Fox ◽  
Stephanie Alfonso ◽  
Jonathan Aow ◽  
Roberto Malinow

We have previously shown that when over-expressed in neurons, green fluorescent protein (GFP) tagged GluA1 (GluA1-GFP) delivery into synapses is dependent on plasticity. A recent study suggests that GluA1 over-expression leads to its incorporation into the synapse, in the absence of additional long-term potentiation-like manipulations. It is possible that a GFP tag was responsible for the difference. Using rectification index as a measure of synaptic delivery of GluA1, we found no difference in the synaptic delivery of GluA1-GFP versus untagged GluA1. We recently published a study showing that while D-APV blocks NMDAr-dependent long-term depression (LTD), MK-801 and 7-chloro kynurenate (7CK) fail to block LTD. We propose a metabotropic function for the NMDA receptor in LTD induction. In contrast to our observations, recent unpublished data suggest that the above antagonists are equally effective in blocking LTD. We noticed different methodology in their study. Here, we show that their methodology has complex effects on synaptic transmission. Therefore, it is not possible to conclude that 7CK is effective in blocking LTD from their type of experiment.


2000 ◽  
Vol 347 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Brian S. FINLIN ◽  
Haipeng SHAO ◽  
Keiko KADONO-OKUDA ◽  
Nan GUO ◽  
Douglas A. ANDRES

Here we report the molecular cloning and biochemical characterization of Rem2 (for Rem, ad and G-related 2), a novel GTP-binding protein identified on the basis of its homology with the Rem, Rad, Gem and Kir (RGK) family of Ras-related small GTP-binding proteins. Rem2 mRNA was detected in rat brain and kidney, making it the first member of the RGK family to be expressed at relatively high levels in neuronal tissues. Recombinant Rem2 binds GTP saturably and exhibits a low intrinsic rate of GTP hydrolysis. Surprisingly, the guanine nucleotide dissociation constants for both Rem2 and Rem are significantly different than the majority of the Ras-related GTPases, displaying higher dissociation rates for GTP than GDP. Localization studies with green fluorescent protein (GFP)-tagged recombinant protein fusions indicate that Rem2 has a punctate, plasma membrane localization. Deletion of the C-terminal seven amino acid residues that are conserved in all RGK family members did not affect the cellular distribution of the GFP fusion protein, whereas a larger deletion, including much of the polybasic region of the Rem2 C-terminus, resulted in its redistribution to the cytosol. Thus Rem2 is a GTPase of the RGK family with distinctive biochemical properties and possessing a novel cellular localization signal, consistent with its having a unique role in cell physiology.


Sign in / Sign up

Export Citation Format

Share Document