scholarly journals Lysis of Escherichia coli by.-Lactam Antibiotics: Deletion Analysis of the Role of Penicillin-binding Proteins 1A and 1B

Microbiology ◽  
1985 ◽  
Vol 131 (10) ◽  
pp. 2839-2845 ◽  
Author(s):  
S. Y. YOUSIF ◽  
J. K. BROOME-SMITH ◽  
B. G. SPRATT
2000 ◽  
Vol 44 (1) ◽  
pp. 169-172 ◽  
Author(s):  
Dieter Pfeifle ◽  
Eva Janas ◽  
Bernd Wiedemann

ABSTRACT Penicillin-binding proteins (PBPs) are involved in the regulation of β-lactamase expression by determining the level of anhydromuramylpeptides in the periplasmatic space. It was hypothesized that one or more PBPs act as a sensor in the β-lactamase induction pathway. We have performed induction studies with Escherichia coli mutants lacking one to four PBPs withdd-carboxypeptidase activity. Therefore, we conclude that a strong β-lactamase inducer must inhibit alldd-carboxypeptidases as well as the essential PBPs 1a, 1b, and/or 2.


1996 ◽  
Vol 40 (4) ◽  
pp. 899-903 ◽  
Author(s):  
D G Rodionov ◽  
E E Ishiguro

The role of protein synthesis in ampicillin-induced lysis of Escherichia coli was investigated. The inhibition of protein synthesis through amino acid deprivation resulted in the rapid development of ampicillin tolerance as a consequence of the stringent response, as previously reported. In contrast, inhibition of protein synthesis by use of ribosome inhibitors such as chloramphenicol did not readily confer ampicillin tolerance and, in fact, promoted the development of both stages of the ampicillin-induced lysis process, i.e., (i) an ampicillin-dependent stage which apparently involves the interaction of penicillin-binding proteins with ampicillin and (ii) an ampicillin-independent stage which may represent the events leading to the deregulation of peptidoglycan hydrolase activity. We propose that lysis was facilitated when protein synthesis was inhibited because the production of new penicillin-binding proteins to replace those which were ampicillin inhibited was prevented under these conditions.


2021 ◽  
Author(s):  
Artur Sargun ◽  
Timothy C. Johnstone ◽  
Hui Zhi ◽  
Manuela Raffatellu ◽  
Elizabeth M. Nolan

Siderophore-β-lactam conjugates based on enterobactin and diglucosylated enterobactin enter the periplasm of uropathogenic E. coli CFT073 via the FepA and IroN transporters, and target penicillin-binding proteins.


1993 ◽  
pp. 295-301
Author(s):  
Terry R. Paul ◽  
Terry J. Beveridge ◽  
Noreen G. Halligan ◽  
Larry C. Blaszczak ◽  
Tom R. Parr

1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.


Sign in / Sign up

Export Citation Format

Share Document