scholarly journals Variation within serovars of Neisseria gonorrhoeae detected by structural analysis of outer-membrane protein PIB and by pulsed-field gel electrophoresis

Microbiology ◽  
1997 ◽  
Vol 143 (4) ◽  
pp. 1415-1422 ◽  
Author(s):  
S. J. Cooke ◽  
H. de la Paz ◽  
C. La Poh ◽  
C. A. Ison ◽  
J. E. Heckels
1986 ◽  
Vol 164 (5) ◽  
pp. 1735-1748 ◽  
Author(s):  
P A Rice ◽  
H E Vayo ◽  
M R Tam ◽  
M S Blake

Neisseria gonorrhoeae that resist complement-dependent killing by normal human serum (NHS) are sometimes killed by immune convalescent serum from patients recovering from disseminated gonococcal infection (DGI). In these studies, killing by immune serum was prevented or blocked by IgG isolated from NHS. Purified human IgG antibodies directed against gonococcal protein III, an antigenically conserved outer membrane protein, contained most of the blocking activity in IgG. Antibodies specific for gonococcal porin (protein I), the major outer membrane protein, displayed no blocking function. In separate experiments, immune convalescent DGI serum which did not exhibit bactericidal activity was restored to killing by selective depletion of protein III antibodies by immunoabsorption. These studies indicate that protein III antibodies in normal and immune human serum play a role in serum resistance of N. gonorrhoeae.


2011 ◽  
Vol 194 (3) ◽  
pp. 397-405 ◽  
Author(s):  
Dražen Papić ◽  
Katrin Krumpe ◽  
Jovana Dukanovic ◽  
Kai S. Dimmer ◽  
Doron Rapaport

The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.


Sign in / Sign up

Export Citation Format

Share Document