scholarly journals Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1915-1921 ◽  
Author(s):  
Judit Makk ◽  
Zalán G. Homonnay ◽  
Zsuzsa Kéki ◽  
Katalin Nemes-Barnás ◽  
Károly Márialigeti ◽  
...  

A strain designated PYM3-14T was isolated from the drinking water network of Budapest (Hungary) and was studied by polyphasic taxonomic methods. The straight-rod-shaped cells stained Gram-negative, were aerobic and non-motile. Phylogenetic analysis of the 16S rRNA gene sequence of strain PYM3-14T revealed a clear affiliation with members of the family Xanthomonadaceae within the class Gammaproteobacteria. The 16S rRNA gene sequence of strain PYM3-14T showed the closest sequence similarities to Arenimonas daechungensis CH15-1T (96.2 %), Arenimonas oryziterrae YC6267T (95.2 %) and Lysobacter brunescens UASM DT (94.4 %). The DNA G+C content of strain PYM3-14T, measured by two different methods (52.0 mol% and 55.9 mol%, respectively), was much lower than that of any member of the genus Arenimonas. The predominant fatty acids (>8 %) were iso-C16:0, iso-C15:0, iso-C14:0, iso-C17:1ω9c and C16:1ω7c alcohol. Strain PYM3-14T contained Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. According to phenotypic and genotypic data strain PYM3-14T represents a novel species of the genus Arenimonas, for which the name Arenimonas subflava sp. nov. is proposed. The type strain is PYM3-14T ( = NCAIM B 02508T = DSM 25526T). On the basis of new data obtained in this study, an emended description of the genus Arenimonas is also proposed.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Pavan Kumar Pindi ◽  
P. Raghuveer Yadav ◽  
A. Shiva Shanker

International drinking water quality monitoring programs have been established in order to prevent or to reduce the risk of contracting water-related infections. A survey was performed on groundwater-derived drinking water from 13 different hospitals in the Mahabubnagar District. A total of 55 bacterial strains were isolated which belonged to both gram-positive and gram-negative bacteria. All the taxa were identified based on the 16S rRNA gene sequence analysis based on which they are phylogenetically close to 27 different taxa. Many of the strains are closely related to their phylogenetic neighbors and exhibit from 98.4 to 100% sequence similarity at the 16S rRNA gene sequence level. The most common group was similar toAcinetobacter junii(21.8%) andAcinetobacter calcoaceticus(10.9%) which were shared by 7 and 5 water samples, respectively. Out of 55 isolates, only 3 isolates belonged to coliform group which areCitrobacter freundiiandPantoea anthophila. More than half (52.7%, 29 strains) of the phylogenetic neighbors which belonged to 12 groups were reported to be pathogenic and isolated from clinical specimens. Out of 27 representative taxa are affiliated have eight representative genera in drinking water except for those affiliated with the generaExiguobacterium, Delftia, Kocuria,andLysinibacillus.


2010 ◽  
Vol 60 (4) ◽  
pp. 754-758 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-positive, non-motile and coccoid-, short rod- or rod-shaped bacterial strain, ISL-16T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain ISL-16T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-16T joined the cluster comprising species of the genus Planococcus. Its 16S rRNA gene sequence contained the same signature nucleotides as those defined for the genus Planococcus. Strain ISL-16T exhibited 16S rRNA gene sequence similarity values of 96.9–98.2 % to the type strains of species of the genus Planococcus. Strain ISL-16T contained MK-8 and MK-7 as the predominant menaquinones and anteiso-C15 : 0, C16 : 1 ω7c alcohol and anteiso-C17 : 0 as the major fatty acids. The DNA G+C content was 48.3 mol%. DNA–DNA relatedness values between strain ISL-16T and the type strains of species of the genus Planococcus were 15–28 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, enabled strain ISL-16T to be differentiated from recognized species of the genus Planococcus. On the basis of the data presented, strain ISL-16T is considered to represent a novel species of the genus Planococcus, for which the name Planococcus salinarum sp. nov. is proposed. The type strain is ISL-16T (=KCTC 13584T=CCUG 57753T). An emended description of the genus Planococcus is also given.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


2011 ◽  
Vol 61 (4) ◽  
pp. 722-727 ◽  
Author(s):  
Se Hee Lee ◽  
Jae Kuk Shim ◽  
Jeong Myeong Kim ◽  
Hyung-Kyoon Choi ◽  
Che Ok Jeon

A Gram-staining-negative, strictly aerobic bacterium, designated strain SD10T, was isolated from a tidal flat of the Yellow Sea, South Korea. Cells were non-spore-forming rods that showed catalase- and oxidase-positive reactions. Growth of strain SD10T was observed at 15–40 °C (optimum, 25–30 °C), at pH 6.0–9.0 (optimum, pH 6.5–8.5) and in the presence of 1–10 % (w/v) NaCl. Strain SD10T contained ubiquinone-10 (Q-10) as a major isoprenoid quinone and C18 : 1ω7c (39.3 %), C16 : 0 (20.2 %), C17 : 0 (8.9 %) and C17 : 1ω6c (8.1 %) as major fatty acids. The cellular polar lipids were identified as phosphatidylglycerol, monoglycosyldiglyceride, glucuronopyranosyldiglyceride and two unidentified glycolipids. The G+C content of the genomic DNA was 55.2 mol%. Based on 16S rRNA gene sequence similarities, the strain was most closely related to Henriciella marina Iso4T and Maribaculum marinum P38T, with similarities of 97.8 and 97.0 %, respectively. The DNA–DNA relatedness between strain SD10T and H. marina Iso4T was 12.0±3.2 %. A phylogenetic analysis based on 16S rRNA gene sequences showed that M. marinum P38T and H. marina Iso4T formed a monophyletic cluster and that their 16S rRNA gene sequence similarity was 98.1 %. DNA–DNA hybridization between H. marina Iso4T and M. marinum LMG 24711T was 22.9±2.7 %, indicating that the two strains belong to separate species. On the basis of chemotaxonomic data and molecular properties, we propose that strain SD10T represents a novel species of the genus Henriciella, for which the name Henriciella litoralis sp. nov. is proposed. The type strain is SD10T ( = KACC 13700T  = DSM 22014T). In addition, we propose to transfer Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. (type strain P38T  = CCTCC AB 208227T  = LMG 24711T  = MCCC 1A01086T), and we present an emended description of the genus Henriciella.


2006 ◽  
Vol 56 (12) ◽  
pp. 2765-2770 ◽  
Author(s):  
Preeti Chaturvedi ◽  
S. Shivaji

Strain HHS 31T, a Gram-positive, motile, rod-shaped, non-spore-forming, alkaliphilic bacterium, was isolated from the melt water of a glacier. Phenotypic and chemotaxonomic characteristics indicate that strain HHS 31T is related to species of the genus Exiguobacterium. The 16S rRNA gene sequence similarities between HHS 31T and strains of known species confirm that it is closely related to members of the genus Exiguobacterium (93–99 %) and that it exhibits >97 % similarity with Exiguobacterium acetylicum DSM 20416T (98.9 %), Exiguobacterium antarcticum DSM 14480T (98.0 %), Exiguobacterium oxidotolerans JCM 12280T (97.9 %) and Exiguobacterium undae DSM 14481T (97.4 %). Phylogenetic analysis based on the 16S rRNA gene sequence further confirms the affiliation of HHS 31T with the genus Exiguobacterium. However, the levels of DNA–DNA relatedness between HHS 31T and E. oxidotolerans JCM 12280T, E. acetylicum DSM 20416T, E. undae DSM 14481T and E. antarcticum DSM 14480T are 50, 63, 67 and 28 %, respectively. Strain HHS 31T also differs from these four closely related species in terms of a number of phenotypic traits. The phenotypic, chemotaxonomic and phylogenetic data suggest that HHS 31T merits the status of a novel species, for which the name Exiguobacterium indicum sp. nov. is proposed. The type strain is HHS 31T (=LMG 23471T=IAM 15368T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2171-2175 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Choong-Hwan Lee ◽  
Tae-Kwang Oh

A Gram-positive, aerobic, non-motile bacterial strain, KSL-107T, was isolated from an alkaline soil from Korea and subjected to a polyphasic taxonomic study. Strain KSL-107T grew optimally at 25 °C and pH 7·0–7·5. Strain KSL-107T had a cell-wall peptidoglycan based on ll-2,6-diaminopimelic acid. It contained MK-9(H4) as the predominant menaquinone and C16 : 0, C16 : 0 2-OH and 10-methyl C18 : 0 as the major fatty acids. The DNA G+C content was 71·5 mol%. Comparative 16S rRNA gene sequence analyses showed that strain KSL-107T was phylogenetically affiliated to the genus Aeromicrobium of the family Nocardioidaceae. Similarity values between the 16S rRNA gene sequence of strain KSL-107T and those of type strains of Aeromicrobium species were in the range 97·9–98·2 %. The isolate could be distinguished from other Aeromicrobium species by levels of DNA–DNA relatedness and differences in some phenotypic characteristics. On the basis of the data presented, it is suggested that strain KSL-107T (=KCTC 19073T=DSM 16824T) represents a novel Aeromicrobium species, for which the name Aeromicrobium alkaliterrae sp. nov. is proposed. An emended description of the genus Aeromicrobium is also proposed.


2005 ◽  
Vol 55 (5) ◽  
pp. 1985-1989 ◽  
Author(s):  
Angel Valverde ◽  
Encarna Velázquez ◽  
Félix Fernández-Santos ◽  
Nieves Vizcaíno ◽  
Raúl Rivas ◽  
...  

Bacterial strain PETP02T was isolated from nodules of Trifolium pratense growing in a Spanish soil. Phylogenetic analysis of the 16S rRNA gene sequence showed that this strain represents a member of the genus Phyllobacterium. However, divergence found with the 16S rRNA gene sequence of the single recognized species of this genus, Phyllobacterium myrsinacearum, indicated that strain PETP02T belongs to a different species. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain represents a novel species of the genus Phyllobacterium, for which the name Phyllobacterium trifolii sp. nov. is proposed. The type strain is PETP02T (=LMG 22712T=CECT 7015T). This strain was strictly aerobic and used several carbohydrates as carbon source. It was not able to reduce nitrate. Aesculin hydrolysis was negative. It did not produce urease, arginine dihydrolase, gelatinase or β-galactosidase. The DNA G+C content was 56·4 mol%. The nodD gene of this strain showed a sequence closely related to those of strains able to nodulate Lupinus. Infectivity tests showed that this strain is able to produce nodules in both Trifolium repens and Lupinus albus.


Sign in / Sign up

Export Citation Format

Share Document