scholarly journals Mameliella atlantica sp. nov., a marine bacterium of the Roseobacter clade isolated from deep-sea sediment of the South Atlantic Ocean

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2255-2259 ◽  
Author(s):  
Hongxiu Xu ◽  
Lijing Jiang ◽  
Shaoneng Li ◽  
Xiang Zeng ◽  
Zongze Shao

A taxonomic study was carried out on strain L6M1-5T, which was isolated from deep-sea sediment collected from the South Atlantic Ocean. The isolate was Gram-reaction-negative, oxidase-negative and catalase-weakly positive. Growth was observed in the presence of 0.5–15 % (w/v) NaCl (optimum 3–5 %), at 10–41 °C (optimum 28–30 °C), and pH 5.0–10.5 (optimum pH 7.0). The principal fatty acids were summed feature8 (C18 : 1ω7c/ω6c) (84.2 %), C18 : 0 (6.3 %), C12 : 1 3-OH (3.2 %) and C16 : 0 (2.7 %). The polar lipid profile comprised phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unknown phospholipids and one unknown lipid. Ubiquinone-10 was the major quinone. The G+C content of the genomic DNA was 66.0 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain L6M1-5T belonged to the genus Mameliella and shared 95.8 % sequence similarity with Mameliella alba JLT354-WT. The combined genotypic and phenotypic data show that strain L6M1-5T represents a novel species of the genus Mameliella, for which the name Mameliella. atlantica sp. nov. is proposed. The type strain is L6M1-5T ( = MCCC 1A07531T = JCM 30230T).

Zootaxa ◽  
2009 ◽  
Vol 1992 (1) ◽  
pp. 20-36 ◽  
Author(s):  
SIMON WEIGMANN ◽  
JÜRGEN GUERRERO-KOMMRITZ

As part of the sampling efforts during the DIVA-II expedition several Tanaidacea of the genus Neotanais were captured in the Guinea and the Cape Basin in the tropical and southern East Atlantic Ocean. Two different species were sampled, Neotanais rotermundiae sp. n. from the Guinea and Neotanais guskei sp. n. from the Cape Basin. The distribution of both species is limited to these basins. A full description for both species is presented. Neotanais guskei sp. n. is the largest Neotanais reported for the South Atlantic Ocean.


2011 ◽  
Vol 61 (4) ◽  
pp. 728-731 ◽  
Author(s):  
Qiliang Lai ◽  
Yuanyuan Fu ◽  
Jianning Wang ◽  
Shuangxi Chen ◽  
Huanzi Zhong ◽  
...  

A taxonomic study was carried out on a novel strain, designated CK-I3-6T, which was isolated from deep-sea sediment of the south-west Indian Ocean Ridge. Cells were Gram-reaction-negative, oxidase- and catalase-positive, rod-shaped and non-motile. Growth was observed at 4–38 °C and in 1–12 % (w/v) NaCl. Cells were able to degrade gelatin and oxidize thiosulfate but did not reduce nitrate. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CK-I3-6T belonged to the genus Citreicella with a sequence similarity of 97.3 % to Citreicella thiooxidans CHLG 1T, while similarities with other taxa were <95.7 %. DNA–DNA hybridization showed that strain CK-I3-6T and C. thiooxidans CHLG 1T showed a low DNA–DNA relatedness (48±3 %). The principal fatty acids were C16 : 0 (7.8 %), C18 : 1ω7c (66.6 %), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c; 6.3 %) and C19 : 0ω8c cyclo (10.0 %). The chromosomal DNA G+C content was 67.5 mol%. On the basis of the combined genotypic and phenotypic data, strain CK-I3-6T represents a novel species of the genus Citreicella, for which the name Citreicella marina sp. nov. is proposed. The type strain is CK-I3-6T ( = CCTCC AB 209064T  = LMG 25230T  = MCCC 1A03060T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3281-3285 ◽  
Author(s):  
Guizhen Li ◽  
Qiliang Lai ◽  
Yaping Du ◽  
Xiupian Liu ◽  
Fengqin Sun ◽  
...  

A novel strain, 22II-S11-z3T, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1–9 % NaCl and temperatures of 10–45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3T belonged to the genus Aestuariivita, with highest sequence similarity to Aestuariivita boseongensis KCTC 42052T (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain 22II-S11-z3T and A. boseongensis KCTC 42052T were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/ω6c) (35.2 %), C19 : 0 cyclo ω8c (20.9 %), C16 : 0 (11.8 %), 11-methyl C18 : 1ω7c (11.4 %) and C12 : 1 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3T represents a novel species of the genus Aestuariivita, for which the name Aestuariivita atlantica sp. nov. is proposed, with the type strain 22II-S11-z3T ( = KCTC 42276T = MCCC 1A09432T).


Author(s):  
THEODORE C. MOORE ◽  
PHILIP D. RABINOWITZ ◽  
ANNE BOERSMA ◽  
PETER E. BORELLA ◽  
ALAN D. CHAVE ◽  
...  

Mycobiology ◽  
2021 ◽  
Vol 49 (2) ◽  
pp. 151-160
Author(s):  
Ying Zhou ◽  
Xiujun Gao ◽  
Cuijuan Shi ◽  
Mengying Li ◽  
Wenwen Jia ◽  
...  

Bioengineered ◽  
2017 ◽  
Vol 8 (5) ◽  
pp. 572-584 ◽  
Author(s):  
Wang Kai ◽  
Yan Peisheng ◽  
Ma Rui ◽  
Jia Wenwen ◽  
Shao Zongze

2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4146-4150 ◽  
Author(s):  
Shuang Wang ◽  
Xianzhong Xu ◽  
Lina Wang ◽  
Kailin Jiao ◽  
Gaiyun Zhang

A Gram-stain-positive, aerobic, motile and non-spore-forming actinobacterium, strain Y32T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Georgenia. Strain Y32T shared highest 16S rRNA gene sequence similarity of 97.8 % with Georgenia muralis 1A-CT, followed by Georgenia thermotolerans TT02-04T (97.4 %), Georgenia daeguensis 2C6-43T (97.2 %), Oceanitalea nanhaiensis JLT1488T (97.2 %), Georgenia ruanii YIM 004T (97.0 %) and Georgenia soli CC-NMPT-T3T (97.0 %). The organism grew in the presence of 0–10 % (w/v) NaCl, at 4–40 °C and at pH 6–11, with optimal growth occurring at 30–35 °C, at pH 7 and in the presence of 3.5 % (w/v) NaCl. The polar lipid profile of strain Y32T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. Strain Y32T contained MK-8(H4) and MK-7(H4) as the major components of the menaquinone system, and anteiso-C15 : 0, iso-C15 : 0 and iso-C14 : 0 as the predominant fatty acids. Galactose was detected as the cell-wall sugar. The G+C content of the DNA was 71.2 mol%. Based on the results of phenotypic, genotypic and phylogenetic analyses, it is considered that strain Y32T represents a novel species of the genus Georgenia, for which the name Georgenia subflava sp. nov. is proposed. The type strain is Y32T ( = LMG 28101T = CGMCC 1.12782T = JCM 19765T = MCCC 1A09955T).


Sign in / Sign up

Export Citation Format

Share Document