scholarly journals Citreicella marina sp. nov., isolated from deep-sea sediment

2011 ◽  
Vol 61 (4) ◽  
pp. 728-731 ◽  
Author(s):  
Qiliang Lai ◽  
Yuanyuan Fu ◽  
Jianning Wang ◽  
Shuangxi Chen ◽  
Huanzi Zhong ◽  
...  

A taxonomic study was carried out on a novel strain, designated CK-I3-6T, which was isolated from deep-sea sediment of the south-west Indian Ocean Ridge. Cells were Gram-reaction-negative, oxidase- and catalase-positive, rod-shaped and non-motile. Growth was observed at 4–38 °C and in 1–12 % (w/v) NaCl. Cells were able to degrade gelatin and oxidize thiosulfate but did not reduce nitrate. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CK-I3-6T belonged to the genus Citreicella with a sequence similarity of 97.3 % to Citreicella thiooxidans CHLG 1T, while similarities with other taxa were <95.7 %. DNA–DNA hybridization showed that strain CK-I3-6T and C. thiooxidans CHLG 1T showed a low DNA–DNA relatedness (48±3 %). The principal fatty acids were C16 : 0 (7.8 %), C18 : 1ω7c (66.6 %), summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c; 6.3 %) and C19 : 0ω8c cyclo (10.0 %). The chromosomal DNA G+C content was 67.5 mol%. On the basis of the combined genotypic and phenotypic data, strain CK-I3-6T represents a novel species of the genus Citreicella, for which the name Citreicella marina sp. nov. is proposed. The type strain is CK-I3-6T ( = CCTCC AB 209064T  = LMG 25230T  = MCCC 1A03060T).

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3281-3285 ◽  
Author(s):  
Guizhen Li ◽  
Qiliang Lai ◽  
Yaping Du ◽  
Xiupian Liu ◽  
Fengqin Sun ◽  
...  

A novel strain, 22II-S11-z3T, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1–9 % NaCl and temperatures of 10–45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3T belonged to the genus Aestuariivita, with highest sequence similarity to Aestuariivita boseongensis KCTC 42052T (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain 22II-S11-z3T and A. boseongensis KCTC 42052T were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/ω6c) (35.2 %), C19 : 0 cyclo ω8c (20.9 %), C16 : 0 (11.8 %), 11-methyl C18 : 1ω7c (11.4 %) and C12 : 1 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3T represents a novel species of the genus Aestuariivita, for which the name Aestuariivita atlantica sp. nov. is proposed, with the type strain 22II-S11-z3T ( = KCTC 42276T = MCCC 1A09432T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2315-2319 ◽  
Author(s):  
Fang-di Xu ◽  
Xue-gong Li ◽  
Xiang Xiao ◽  
Jun Xu

A taxonomic study employing a polyphasic approach was carried out on strain FT102T, which was isolated from a deep-sea sediment sample collected in the south-west Indian Ocean at a depth of 2784 m. The strain was Gram-stain-negative, non-motile, rod-shaped and non-spore-forming. It grew optimally at 37–42 °C, pH 6.5–8.5 and in the presence of 1–4 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences confirmed the separation of the novel strain from recognized members of the genus Kangiella that are available in public databases. Strain FT102T exhibited 95.5–98.6 % 16S rRNA gene sequence similarity to the type strains of the eight recognized species of the genus Kangiella. The chemotaxonomically characteristic fatty acid iso-C15:0 and ubiquinone Q-8 were also detected. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G+C content of strain FT102T was 45.0 mol%. The mean DNA–DNA relatedness values between strain FT102T and the type strains of Kangiella aquimarina and Kangiella koreensis were 47.3 % and 13.7 %, respectively. The combined results of phylogenetic, physiological and chemotaxonomic studies indicated that strain FT102T was affiliated with the genus Kangiella but differed from the recognized species of the genus Kangiella. Therefore, strain FT102T represents a novel species of the genus Kangiella, for which the name Kangiella profundi sp. nov. is proposed. The type strain is FT102T ( = CGMCC 1.12959T = KCTC 42297T = JCM 30232T)


2011 ◽  
Vol 61 (6) ◽  
pp. 1370-1374 ◽  
Author(s):  
Qiliang Lai ◽  
Liping Wang ◽  
Yuhui Liu ◽  
Yuanyuan Fu ◽  
Huanzi Zhong ◽  
...  

A taxonomic study was carried out on a novel bacterial strain, designated W11-5T, which was isolated from a pyrene-degrading consortium enriched from deep-sea sediment of the Pacific Ocean. The isolate was Gram-reaction-negative and oxidase- and catalase-positive. Growth was observed in 0.5–12 % (w/v) NaCl and at 10–42 °C. On the basis of 16S rRNA gene sequence analysis, strain W11-5T was shown to belong to the genus Alcanivorax with a close relation to A. dieselolei B-5T (93.9 % 16S rRNA sequence similarity), A. balearicus MACL04T (93.1 %), A. hongdengensis A-11-3T (93.1 %), A. borkumensis SK2T (93.0 %), A. venustensis ISO4T (93.0 %) and A. jadensis T9T (92.9 %). Similarities between the gyrB gene sequences of W11-5T and other species of the genus Alcanivorax were between 76.8 and 80.8 %. The principal fatty acids were C12 : 0 3-OH (8.0 %), C16 : 0 (29.1 %) and C18 : 1ω7c (27.4 %). The G+C content of the chromosomal DNA was 60.8 mol%. Based on its morphology, physiology and fatty acid composition as well as the results of 16S rRNA and gyrB gene sequence analyses, strain W11-5T ( = MCCC 1A00474T  = CCTCC AB 208236T  = LMG 25514T) represents a novel species of the genus Alcanivorax, for which the name Alcanivorax pacificus sp. nov. is proposed.


2020 ◽  
Vol 70 (7) ◽  
pp. 4280-4284 ◽  
Author(s):  
Xianzhi Liao ◽  
Qiliang Lai ◽  
Junpeng Yang ◽  
Chunming Dong ◽  
Dengfeng Li ◽  
...  

A taxonomic study was carried out on strain PA15-N-34T, which was isolated from deep-sea sediment of Pacific Ocean. The bacterium was Gram-stain-positive, oxidase- and catalase-positive and rod-shaped. Growth was observed at salinity of 0–15.0% NaCl and at temperatures of 10–45 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PA15-N-34T belonged to the genus Alcanivorax , with the highest sequence similarity to Alcanivorax profundi MTEO17T (97.7 %), followed by Alcanivorax nanhaiticus 19 m-6T (97.3 %) and 12 other species of the genus Alcanivorax (93.4 %–97.0 %). The average nucleotide identity and DNA–DNA hybridization values between strain PA15-N-34T and type strains of the genus Alcanivorax were 71.46–81.78% and 18.7–25.2 %, respectively. The principal fatty acids (>10 %) were summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c; 31.2 %), C16 : 0 (25.0 %) and summed feature 3 (14.6 %). The DNA G+C content was 57.15 mol%. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, four unidentified aminolipids and three unidentified lipids. The novel strain can be differentiated from its closest type strain by a negative test for urease and the presence of diphosphatidylglycerol and aminolipid. The combined genotypic and phenotypic data show that strain PA15-N-34T represents a novel species within the genus Alcanivorax , for which the name Alcanivorax sediminis sp. nov. is proposed, with the type strain PA15-N-34T (=MCCC 1A14738T=KCTC 72163T).


2010 ◽  
Vol 60 (4) ◽  
pp. 733-736 ◽  
Author(s):  
Qiliang Lai ◽  
Nan Qiao ◽  
Changliang Wu ◽  
Fengqin Sun ◽  
Jun Yuan ◽  
...  

A taxonomic study was carried out on strain B106T, which was isolated from a polycyclic aromatic hydrocarbon-degrading consortium, enriched with deep seawater from the Indian Ocean. The isolate was Gram-negative, oxidase- and catalase-positive, rod-shaped and motile by means of one polar flagellum. Growth was observed at salinities of 0.5–11 % and at temperatures of 4–42 °C, and the strain was capable of nitrate reduction, but was unable to degrade Tween 80 or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain B106T belonged to the genus Stappia, with a highest sequence similarity of 97.7 % to Stappia stellulata IAM 12621T; similarity to other strains was below 95.2 %. DNA–DNA hybridization between strain B106T and S. stellulata IAM 12621T was 43 %. The major fatty acids were C16 : 0 (6.10 %), C18 : 1 ω7c (62.58 %), C18 : 0 (5.17 %), C18 : 1 ω7c 11-methyl (14.48 %) and C19 : 0 ω8c cyclo (4.70 %). The G+C content of the chromosomal DNA was 65.9 mol%. The combined genotypic and phenotypic data showed that strain B106T represents a novel species of the genus Stappia, for which the name Stappia indica sp. nov. is proposed, with the type strain B106T (=PR56-8T=CCTCC AB 208228T=LMG 24625T=MCCC 1A01226T).


2011 ◽  
Vol 61 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Qiliang Lai ◽  
Liping Wang ◽  
Yuhui Liu ◽  
Jun Yuan ◽  
Fengqin Sun ◽  
...  

A taxonomic study was carried out on strain P31T, which was isolated from a polycyclic aromatic hydrocarbon (PAH)-degrading consortium enriched with deep-sea water of the Indian Ocean. The isolate was Gram-reaction-negative, rod-shaped, motile by means of a polar flagellum and incapable of reducing nitrate to nitrite. Growth was observed at 0.5–8 % NaCl and at 10–41 °C. Strain P31T was unable to degrade Tween 80 or gelatin. The major respiratory quinone was ubiquinone 11 (Q-11). The dominant fatty acids were C18 : 1 ω7c (39.79 %), 11-methyl C18 : 1 ω7c (17.84 %), C19 : 0 cyclo ω8c (12.05 %) and C18 : 0 (6.09 %). The G+C content of the chromosomal DNA was 62.1 mol%. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain P31T and Parvibaculum lavamentivorans DS-1T formed a distinct lineage in the family Phyllobacteriaceae; these two strains showed 95.7 % sequence similarity, while similarities between P31T and other members of the genus Parvibaculum were below 93 %. Based on the genotypic and phenotypic data, strain P31T represents a novel species of the genus Parvibaculum, for which the name Parvibaculum indicum sp. nov. is proposed. The type strain is P31T (=CCTCC AB 208230T =LMG 24712T =MCCC 1A01132T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1710-1714 ◽  
Author(s):  
Jing Xiao ◽  
Yingxue Luo ◽  
Jing Xu ◽  
Shujie Xie ◽  
Jun Xu

The taxonomic status of an actinobacterium that changed colour during growth, strain 42H12-1T, isolated from deep-sea sediment collected from the Atlantic Ocean, was established using a combination of genotypic and phenotypic data. Strain 42H12-1T formed a distinct branch in the 16S rRNA gene phylogenetic tree together with the type strains in the genus Modestobacter. The highest sequence similarity by blast analysis was to Modestobacter versicolor CP153-2T (98.5 %) and the second-highest sequence similarity was to Modestobacter multiseptatus AA-826T (97.5 %). DNA–DNA relatedness of only 12 % (sd 1.82 %) between strain 42H12-1T and M. versicolor DSM 16678T differentiated them as members of separate genomic species. Colonies of strain 42H12-1T were black on oligotrophic medium, but orange to red, turning black, on copiotrophic medium. The peptidoglycan contained meso-diaminopimelic acid. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and an unknown aminophospholipid. The predominant menaquinone was MK-9(H4). The major fatty acids were iso-C16 : 0 and C17 : 1ω8c. The DNA G+C content was 72.3±1 mol%. Strain 42H12-1T ( = DSM 45201T  = CGMCC 4.5581T) is assigned as the type strain of a novel species of the genus Modestobacter, for which the name Modestobacter marinus sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2255-2259 ◽  
Author(s):  
Hongxiu Xu ◽  
Lijing Jiang ◽  
Shaoneng Li ◽  
Xiang Zeng ◽  
Zongze Shao

A taxonomic study was carried out on strain L6M1-5T, which was isolated from deep-sea sediment collected from the South Atlantic Ocean. The isolate was Gram-reaction-negative, oxidase-negative and catalase-weakly positive. Growth was observed in the presence of 0.5–15 % (w/v) NaCl (optimum 3–5 %), at 10–41 °C (optimum 28–30 °C), and pH 5.0–10.5 (optimum pH 7.0). The principal fatty acids were summed feature8 (C18 : 1ω7c/ω6c) (84.2 %), C18 : 0 (6.3 %), C12 : 1 3-OH (3.2 %) and C16 : 0 (2.7 %). The polar lipid profile comprised phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unknown phospholipids and one unknown lipid. Ubiquinone-10 was the major quinone. The G+C content of the genomic DNA was 66.0 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain L6M1-5T belonged to the genus Mameliella and shared 95.8 % sequence similarity with Mameliella alba JLT354-WT. The combined genotypic and phenotypic data show that strain L6M1-5T represents a novel species of the genus Mameliella, for which the name Mameliella. atlantica sp. nov. is proposed. The type strain is L6M1-5T ( = MCCC 1A07531T = JCM 30230T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 16-20 ◽  
Author(s):  
Rui Shao ◽  
Qiliang Lai ◽  
Xiupian Liu ◽  
Fengqin Sun ◽  
Yaping Du ◽  
...  

A taxonomic study was carried out on strain 22II14-10F7T, which was isolated from the deep-sea water of the Atlantic Ocean with oil-degrading enrichment. The bacterium was Gram-stain-negative, oxidase- and catalase-positive and rod-shaped. Growth was observed at salinities from 0.5 to 15 % and at temperatures from 4 to 37 °C; it was unable to hydrolyse Tween 40, 80 or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II14-10F7T represented a member of the genus Zunongwangia , with highest sequence similarity of 97.3 % to Zunongwangia profunda SM-A87T, while the similarities to other species were all below 94.0 %. The DNA–DNA hybridization estimate of the similarity between strain 22II14-10F7T and Z. profunda SM-A87T was 27.20±2.43 % according to their genome sequences. The principal fatty acids were iso-C15 : 0, anteiso-C15 : 0 , iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1ω7c/ω6c) and summed feature 9 (iso-C17 : 1ω9c or C16 : 0 10-methyl). The G+C content of the chromosomal DNA was 35.5 mol%. The major respiratory quinone was determined to be MK-6. Phosphatidylethanolamine (PE), two aminolipids (AL1 and AL2) and five unknown lipids (L1–L5) were present. The combined genotypic and phenotypic data show that strain 22II14-10F7T represents a novel species of the genus Zunongwangia , for which the name Zunongwangia atlantica sp. nov. is proposed, with the type strain 22II14-10F7T ( = CGMCC1.12470T = LMG 27421T = MCCC 1A06481T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1549-1553 ◽  
Author(s):  
Atsushi Kurata ◽  
Masayuki Miyazaki ◽  
Tohru Kobayashi ◽  
Yuichi Nogi ◽  
Koki Horikoshi

A psychrotolerant, obligately alkaliphilic, collagenolytic enzyme-producing bacterium, strain AC40T, was isolated from a deep-sea sediment off Torishima Island, Japan, at a depth of 4026 m. Phylogenetic analysis of 16S rRNA gene sequences indicated that this bacterium was closely related to members of the genus Alkalimonas, with highest sequence similarity (97.9 %) to Alkalimonas delamerensis 1E1T. DNA–DNA hybridization experiments of strain AC40T with A. delamerensis 1E1T revealed a level of relatedness of less than 30 %. Cells of strain AC40T were strictly aerobic, rod-shaped, Gram-negative and motile by means of a single polar flagellum. The organism grew over a range of temperatures from 5 to 37 °C and at initial pH values between 7.0 and 10.5. Optimal growth was observed at 33 °C and at pH 8.5–10.0. Cellular fatty acids of strain AC40T were predominantly saturated and mono-unsaturated straight-chain components (C16 : 0 and C18 : 1). The major isoprenoid quinone was Q-8. The G+C content of the DNA was 49.3 mol%. Phylogenetic characteristics, physiological properties and DNA–DNA hybridization data indicate that strain AC40T represents a novel species of the genus Alkalimonas, for which the name Alkalimonas collagenimarina sp. nov. is proposed. The type strain is AC40T (=JCM 14267T=NCIMB 14266T).


Sign in / Sign up

Export Citation Format

Share Document