scholarly journals Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the Sea of Japan

2010 ◽  
Vol 60 (2) ◽  
pp. 317-320 ◽  
Author(s):  
Naoto Tanaka ◽  
Lyudmila A. Romanenko ◽  
Galina M. Frolova ◽  
Valery V. Mikhailov

The phenotypic and phylogenetic characteristics of an aerobic, Gram-negative, motile, non-pigmented Alteromonas-like bacterium (designated strain KMM 3894T), isolated from a sandy sediment sample collected offshore of the Sea of Japan, were investigated. Comparative 16S rRNA gene sequence analysis revealed that strain KMM 3894T belonged to the genus Aestuariibacter and was most closely related to Aestuariibacter halophilus JC2043T (95.5 % sequence similarity). Fatty acid analysis showed C16 : 1 ω7c, C18 : 1 ω7c, and C16 : 0 as the dominant components. Strain KMM 3894T could be differentiated from recognized species of the genus Aestuariibacter by its ability to grow at 4 °C and at 30 °C, the optimum temperature for growth, and its inability to utilize most carbohydrates. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain KMM 3894T is considered to represent a novel species of the genus Aestuariibacter, for which the name Aestuariibacter litoralis sp. nov. is proposed. The type strain is KMM 3894T (=NRIC 0754T=JCM 15896T).

2005 ◽  
Vol 55 (1) ◽  
pp. 235-238 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Anatoly M. Lysenko ◽  
Valery V. Mikhailov ◽  
Kyung Sook Bae ◽  
...  

A bacterial strain, designated KMM 6049T, was isolated from the sea urchin Strongylocentrotus intermedius inhabiting the Sea of Japan. The bacterium studied was strictly aerobic, heterotrophic, yellow-pigmented, non-motile, Gram-negative and oxidase-, catalase-, β-galactosidase- and alkaline phosphatase-positive. 16S rRNA gene sequence analysis indicated that strain KMM 3524T was closely related to Salegentibacter holothuriorum and Salegentibacter salegens (sharing 97·7 and 98 % sequence similarity, respectively). DNA–DNA relatedness levels between strains KMM 6049T and S. holothuriorum KMM 3524T and S. salegens DSM 5424T were 24 and 45 %, respectively, indicating that KMM 6049T belongs to a novel species of the genus Salegentibacter, for which the name Salegentibacter mishustinae sp. nov. is proposed. The type strain is KMM 6049T (=KCTC 12263T=LMG 22584T=NBRC 100592T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
Kyoung-Ho Kim ◽  
Leonid N. Ten ◽  
Qing-Mei Liu ◽  
Wan-Taek Im ◽  
Sung-Taik Lee

A Gram-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated TR6-04T, was isolated from compost and characterized taxonomically by using a polyphasic approach. The organism grew optimally at 30 °C and at pH 6.5–7.0. The isolate was positive for catalase and oxidase tests but negative for gelatinase, indole and H2S production. Comparative 16S rRNA gene sequence analysis showed that strain TR6-04T fell within the radiation of the cluster comprising Sphingobacterium species and clustered with Sphingobacterium mizutaii ATCC 33299T (96.7 % sequence similarity); the similarity to sequences of other species within the family Sphingobacteriaceae was less than 92.0 %. The G+C content of the genomic DNA was 38.7 mol%. The predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c). These chemotaxonomic data supported the affiliation of strain TR6-04T to the genus Sphingobacterium. However, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain TR6-04T (=KCTC 12579T=LMG 23402T=CCUG 52468T) should be classified as the type strain of a novel species, for which the name Sphingobacterium daejeonense sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2153-2156 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Youn-Kyung Baek ◽  
Seon-Young Lee ◽  
...  

A novel bacterium, designated strain H3-R18T, was isolated from seashore sand collected from Homi cape, Pohang city, Korea. Cells were Gram-negative, aerobic, non-motile, cream-coloured, mesophilic and slightly halotolerant. 16S rRNA gene sequence analysis indicated that the organism was a member of the genus Pseudomonas, but the sequence showed ⩽96.3 % sequence similarity to that of the type strains of all recognized Pseudomonas species. Highest sequence similarities were to Pseudomonas brenneri CFML 97-391T (96.3 %) and Pseudomonas migulae CIP 105470T (96.3 %). The major fatty acids were summed feature 3 and C16 : 0, with lesser amounts of C12 : 0, C12 : 0 3-OH, C18 : 1ω7c and C14 : 0. The major isoprenoid quinone was Q-9. The DNA G+C content was 64.0 mol%. The phylogenetic, phenotypic and genetic properties of strain H3-R18T suggest that it represents a novel species, for which the name Pseudomonas pohangensis sp. nov. is proposed. The type strain is H3-R18T (=KACC 11517T=DSM 17875T).


2005 ◽  
Vol 55 (2) ◽  
pp. 637-641 ◽  
Author(s):  
Hana Yi ◽  
Huyn-Myung Oh ◽  
Jung-Hyun Lee ◽  
Sang-Jin Kim ◽  
Jongsik Chun

A yellow-pigmented, Gram-negative and aerobic bacterial strain, designated AT1026T, was isolated from a terrestrial sample from the Antarctic. Results of 16S rRNA gene sequence analysis indicated that the Antarctic isolate belonged to the genus Flavobacterium, with the highest sequence similarity to Flavobacterium tegetincola (96·4 %). Cells were non-motile, non-gliding and psychrotolerant, with optimum and maximum temperatures of about 20 and 25 °C. Flexirubins were absent. The major isoprenoid quinone (MK-6), predominant cellular fatty acids (iso-C15 : 1 G, iso-C15 : 0 and a mixture of C16 : 1 ω7c and/or iso-C15 : 0 2-OH) and DNA G+C content (38 mol%) of the Antarctic isolate were consistent with those of the genus Flavobacterium. In contrast, several phenotypic characters can be used to differentiate this isolate from other flavobacteria. The polyphasic data presented in this study indicated that this isolate should be classified as a novel species in the genus Flavobacterium. The name Flavobacterium antarcticum sp. nov. is therefore proposed for the Antarctic isolate; the type strain is AT1026T (=IMSNU 14042T=KCTC 12222T=JCM 12383T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2861-2866 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Zubair Aslam ◽  
...  

A Gram-positive, non-motile, endospore-forming bacterium, designated Gsoil 1517T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized in order to determine its taxonomic position, using a polyphasic approach. It was found to rod-shaped and aerobic or facultatively anaerobic. It grew optimally at 30 °C and at pH 6.5–7.0. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1517T forms a distinct phylogenetic lineage within the genus Bacillus, being related to Bacillus funiculus JCM 11201T (96.8 %). The strain showed less than 94.3 % sequence similarity with other Bacillus species. The G+C content of the genomic DNA was found to be 47.8 mol% and the predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0 (42.4 %), anteiso-C15 : 0 (17.4 %), iso-C14 : 0 (9.7 %) and C16 : 0 (6.0 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1517T represents a novel species of the genus Bacillus, for which the name Bacillus panaciterrae sp. nov. is proposed. The type strain is Gsoil 1517T (=KCTC 13929T=CCUG 52470T=LMG 23408T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
Long Jin ◽  
Kwang Kyu Kim ◽  
Sang-Hoon Baek ◽  
Sung-Taik Lee

Two strains, designated B1-1T and B6-8T, were isolated from the Geumho River and the Dalseo Stream in Korea. Comparative 16S rRNA gene sequence analysis showed a clear affiliation of these two bacteria with the class Alphaproteobacteria, their closest relatives being Kaistia adipata KCTC 12095T, Kaistia granuli KCTC 12575T, Kaistia soli KACC 12605T and Kaistia terrae KACC 12910T with 16S rRNA gene sequence similarities of 95.3 –97.7 % to the two novel strains. Strains B1-1T and B6-8T shared a 16S rRNA gene sequence similarity value of 96.1 %. Cells of the two strains were Gram-reaction-negative, aerobic, non-motile, short rods or cocci. The predominant ubiquinone was Q-10. The major fatty acids were C16 : 0, C18 : 1ω7c, C18 : 0 and C19 : 0ω8c cyclo for strain B1-1T and C16 : 0, C18 : 1ω7c, C18 : 0, C18 : 1 2-OH, and C19 : 0ω8c cyclo for strain B6-8T. The G+C contents of the genomic DNA of the strains B1-1T and B6-8T were 61.6 and 66.5 mol%, respectively. Based on the results of this polyphasic study, strains B1-1T ( = KCTC 12849T  = DSM 18799T) and B6-8T ( = KCTC 12850T  = DSM 18800T) represent two novel species of the genus Kaistia, for which the names Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov. are proposed, respectively.


2011 ◽  
Vol 61 (4) ◽  
pp. 938-941 ◽  
Author(s):  
Sung-Heun Cho ◽  
Song-Hee Chae ◽  
Wan-Taek Im ◽  
Seung Bum Kim

A Gram-negative, aerobic, non-motile, yellow-pigmented, rod-shaped bacterium (strain JS-08T) isolated from seawater was subjected to a polyphasic taxonomic study. 16S rRNA gene sequence analysis indicated that strain JS-08T belongs to the genus Myroides, a member of the phylum Bacteroidetes. Its closest phylogenetic relative was Myroides odoratimimus JCM 7460T, with which it shared 97.0 % 16S RNA gene sequence similarity. Strain JS-08T contained menaquinone-6 (MK-6) as the predominant menaquinone, and the dominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and a summed feature consisting of iso-C15 : 0 2-OH and/or C16 : 1ω7c. The DNA G+C content of strain JS-08T was 34.2 mol%. Based on phenotypic, genotypic and phylogenetic evidence, it is suggested that strain JS-08T represents a novel species of the genus Myroides, for which the name Myroides marinus sp. nov. is proposed. The type strain is JS-08T ( = KCTC 23023T  = JCM 16529T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1173-1176 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Anatoly M. Lysenko ◽  
Valery V. Mikhailov ◽  
...  

The taxonomic position of a novel, marine, heterotrophic, aerobic, pigmented, non-motile bacterium that was isolated from a green alga, Ulva fenestrata, inhabiting the Sea of Japan, was determined. 16S rRNA gene sequence analysis revealed that the strain, KMM 3941T, is a member of the genus Arenibacter. The results of DNA–DNA hybridization experiments, supported by phenotypic and chemotaxonomic data, showed that the isolate represents a novel species of the genus Arenibacter, for which the name Arenibacter certesii sp. nov. is proposed. The type strain is KMM 3941T (=KCTC 12113T=CCUG 48006T).


Sign in / Sign up

Export Citation Format

Share Document