scholarly journals Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils

2010 ◽  
Vol 60 (3) ◽  
pp. 526-530 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Young-Ah Jeon ◽  
...  

Two aerobic, Gram-positive, rod-shaped bacterial strains, 5YN10-14T and GR21-5T, were isolated from the Yongneup wetland and ginseng soil in Korea, respectively. The two strains formed ellipsoidal or oval spores positioned centrally or paracentrally in swollen sporangia. On the basis of 16S rRNA gene sequence analysis, these strains were related to members of the genus Cohnella. 16S rRNA gene sequence similarity between strains 5YN10-14T and GR21-5T was 95.9 %. Strains 5YN10-14T and GR21-5T showed, respectively, 94.3 and 95.2 % 16S rRNA gene sequence similarity to Cohnella thermotolerans CCUG 47242T, 94.6 and 94.4 % to Cohnella hongkongensis HKU3T, 94.7 and 94.7 % to Cohnella laeviribosi RI-39T, and 95.4 and 94.8 % to Cohnella phaseoli GSPC1T. The major fatty acids of strain 5YN10-14T were anteiso-C15 : 0 (51.1 %), iso-C16 : 0 (18.5 %) and C16 : 0 (13.2 %), and the major fatty acids of strain GR21-5T were anteiso-C15 : 0 (48.9 %), iso-C16 : 0 (15.0 %) and iso-C15 : 0 (12.2 %). The two strains contained menaquinone with seven isoprene units (MK-7) as the predominant quinone, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids; however, strain 5YN10-14T also contained lysylphosphatidylglycerol as a major polar lipid, whereas strain GR21-5T had an unknown aminophospholipid as another major polar lipid. The DNA G+C contents of strains 5YN10-14T and GR21-5T were 58.8 and 61.3 mol%, respectively. Based on the results of the phylogenetic and phenotypic data presented, it was concluded that the two strains represent two novel species of the genus Cohnella, for which the names Cohnella yongneupensis sp. nov. (type strain 5YN10-14T=KACC 11768T=DSM 18998T) and Cohnella ginsengisoli sp. nov. (type strain GR21-5T=KACC 11771T=DSM 18997T) are proposed.

2010 ◽  
Vol 60 (8) ◽  
pp. 1849-1853 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Seung-Hee Yoo ◽  
Byung-Yong Kim ◽  
...  

Two aerobic, Gram-reaction-negative, non-spore-forming bacterial strains, 4M29T and 4M40T, were isolated from cotton composts. The two strains grew in the presence of 0–5 % (w/v) NaCl (optimum growth in the absence of NaCl), at pH 6.0–8.0 (optimum, pH 7.0) and at 15–45 °C (optimum, 30 °C). The strains shared 97.1 % 16S rRNA gene sequence similarity. Strains 4M29T and 4M40T showed the next highest levels of 16S rRNA gene sequence similarity to Parapedobacter koreensis Jip14T (95.6 and 94.4 %, respectively) and Parapedobacter soli DCY14T (95.2 and 93.8 %). The level of DNA–DNA relatedness between strains 4M29T and 4M40T was 38 %. The two strains contained iso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH as major fatty acids, MK-7 as the major respiratory quinone, homospermidine as the only polyamine and phosphatidylethanolamine as the major polar lipid. The DNA G+C contents of strains 4M29T and 4M40T were 47.6 and 48.6 mol%, respectively. On the basis of phylogenetic and phenotypic data, strains 4M29T and 4M40T are considered to represent two novel species of the genus Parapedobacter, for which the names Parapedobacter luteus sp. nov. (type strain 4M29T =KACC 10955T =JCM 15977T) and Parapedobacter composti sp. nov. (type strain 4M40T =KACC 10972T =JCM 15978T) are proposed.


2011 ◽  
Vol 61 (2) ◽  
pp. 384-391 ◽  
Author(s):  
Wolfgang Eder ◽  
Gerhard Wanner ◽  
Wolfgang Ludwig ◽  
Hans-Jürgen Busse ◽  
Frank Ziemke-Kägeler ◽  
...  

A Gram-negative, oxidase- and catalase-positive, flagellated, rod-shaped bacterium, designated strain EM 1T, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belonged to the family Oxalobacteraceae within the class Betaproteobacteria; the closest phylogenetic relative was Undibacterium pigrum DSM 19792T (96.7 % gene sequence similarity). The new isolate could be distinguished from the type strain of U. pigrum DSM 19792T (=CCUG 49009T=CIP 109318T) and from strain CCUG 49012T, which has been described as a second genomovar of this species, on the basis of genotypic data and several phenotypic properties. An S-layer was present in the cell envelope in U. pigrum DSM 19792T, but was absent in strains EM 1T and CCUG 49012T. Test conditions were established that enabled strain CCUG 49012T to be distinguished from U. pigrum DSM 19792T. As found for U. pigrum, the main fatty acids of strains EM 1T and CCUG 49012T were summed feature 3 (including unsaturated C16 : 1 ω7c), straight-chain C16 : 0 and unsaturated C18 : 1 ω7c (low percentage in strain CCUG 49012T), and C10 : 0 3-OH was the sole hydroxylated fatty acid. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The polyamine profile was mainly composed of the major compound putrescine and moderate amounts of 2-hydroxyputrescine. In contrast to U. pigrum and strain CCUG 49012T, where ubiquinone Q8 was reported as the sole quinone component, the quinone system of strain EM 1T consisted of ubiquinone Q-8 (64 %) and Q-7 (36 %). The 16S rRNA gene sequence similarity, the polar lipid profile and the absence of C12-hydroxylated fatty acids all indicated that strain EM 1T was affiliated with the genus Undibacterium. 16S rRNA gene sequence similarity values lower than 97.0 % and several differentiating phenotypic traits demonstrated that strain EM 1T represents a novel species for which the name Undibacterium oligocarboniphilum sp. nov. is proposed (type strain EM 1T=DSM 21777T=CCUG 57265T). In addition, based on previously published results and this study, a separate species, Undibacterium parvum sp. nov., is proposed with strain CCUG 49012T (=DSM 23061T=CIP 109317T) as the type strain.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


Sign in / Sign up

Export Citation Format

Share Document