scholarly journals Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern

2010 ◽  
Vol 60 (9) ◽  
pp. 2089-2093 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin-Yi Li ◽  
Xia Gao ◽  
Xue-Wei Xu ◽  
Yu-Guang Zhou ◽  
...  

Two extremely halophilic archaea, strains RO5-2T and RO5-14, were isolated from Rudong marine solar saltern in Jiangsu, China. Cells of the two strains were pleomorphic, motile and stained Gram-negative. Colonies were red-pigmented. Strains RO5-2T and RO5-14 were able to grow at 20–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4–3.9 M NaCl), at 0.03–0.7 M MgCl2 (optimum 0.5 M MgCl2) and at pH 5.5–8.0 (optimum pH 6.5–7.0). Cells lyse in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1). The 16S rRNA gene sequences of strains RO5-2T and RO5-14 showed 93.4–93.8 % similarity to the closest cultivated relative, Halosarcina pallida. The DNA G+C content of strains RO5-2T and RO5-14 was 61.0 mol% and 59.9 mol%, respectively. The DNA–DNA relatedness between strains RO5-2T and RO5-14 was 86.0 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains RO5-2T and RO5-14 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halopelagius inordinatus gen. nov., sp. nov. is proposed. The type strain is RO5-2T (=CGMCC 1.7739T =JCM 15773T).

2010 ◽  
Vol 60 (6) ◽  
pp. 1366-1371 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Fang-Fang Sun ◽  
Ying Dong ◽  
Xue-Wei Xu ◽  
...  

Two extremely halophilic archaea, strains RO2-11T and HO2-1, were isolated from two Chinese marine solar salterns, Rudong solar saltern and Haimen solar saltern, respectively. Cells of the two strains were polymorphic and Gram-stain-negative; colonies were red-pigmented. The two strains grew at NaCl concentrations of 2.6–4.3 M (optimum 3.9 M) and required at least 0.1 M Mg2+ for growth. They were able to grow over a pH range of 6.0–8.0 and a temperature range of 20–50 °C, with optimal pH of 7.5 and optimal temperature of 37 °C. The major polar lipids of strain RO2-11T and strain HO2-1 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three glycolipids, two of them chromatographically identical to S-DGD-1 and DGD-1, the third unidentified. The 16S rRNA gene sequence similarity of strain RO2-11T and strain HO2-1 was 99.3 % and highest sequence similarity with the closest relative (Haloferax larsenii) was 91.4 %. Based on the data obtained, the two isolates could not be classified in any recognized genus of the family Halobacteriaceae. Strain RO2-11T and strain HO2-1 are thus considered to represent a novel species of a new genus within the family Halobacteriaceae, for which the name Halogranum rubrum gen. nov., sp. nov. is proposed. The type strain is RO2-11T (=CGMCC 1.7738T =JCM 15772T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2462-3466 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin-Yi Li ◽  
Xue-Wei Xu ◽  
Yu-Guang Zhou ◽  
...  

A halophilic archaeon, strain RO1-6T, was isolated from a marine solar saltern in eastern China. Cells of strain RO1-6T were pleomorphic and motile and stained Gram-negative. Strain RO1-6T grew well on complex medium and colonies were red-pigmented. It was able to grow at 20–50 °C (optimum 37 °C), in 2.1–5.1 M NaCl (optimum 3.9 M NaCl), in 0.05–0.70 M MgCl2 (optimum 0.30 M MgCl2) and at pH 6.5–8.0 (optimum pH 7.0). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of strain RO1-6T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two glycolipids that were chromatographically identical to S-DGD-1 and S2-DGD. The 16S rRNA gene sequence of strain RO1-6T showed similarities of 96.9 and 96.4 % to those of the type strains of Halosarcina pallida and Halogeometricum borinquense, respectively, members of the most closely related recognized genera within the family Halobacteriaceae. The DNA G+C content of strain RO1-6T was 61.2 mol%. Phenotypic characterization and phylogenetic analysis revealed that strain RO1-6T is related to Halosarcina pallida and represents a novel species of the genus Halosarcina, for which the name Halosarcina limi sp. nov. is proposed; the type strain is RO1-6T (=CGMCC 1.8711T =JCM 16054T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2613-2617 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Xia Gao ◽  
Xin-Yi Li ◽  
Xue-Wei Xu ◽  
...  

Two halophilic archaea, strains RO1-4T and RO1-64, were isolated from a marine solar saltern in Jiangsu, China. Cells of the two strains were pleomorphic, motile, and stained Gram-negative. Colonies were red-pigmented. Strains RO1-4T and RO1-64 were able to grow at 25–55 °C (optimum 40–42 °C), at 2.1–5.1 M NaCl (optimum 3.9 M NaCl), at 0.05–0.7 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–8.5 (optimum pH 7.0). Cells lyse in distilled water and the minimal NaCl concentration to prevent cell lysis is 12 % (w/v). On the basis of 16S rRNA gene sequence analysis, strains RO1-4T and RO1-64 were closely related to Halogeometricum borinquense PR3T (98.0 and 98.2 % similarity, respectively) and Halosarcina pallida BZ256T (97.8 and 97.9 %). The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two glycolipids (S-DGD-1 and DGD-1). The DNA G+C contents of strains RO1-4T and RO1-64 are 64.9 and 62.4 mol%, respectively. The DNA–DNA hybridization value between strains RO1-4T and RO1-64 was 83.0 % and both strains showed low DNA–DNA relatedness with Halogeometricum borinquense PR3T (42.5 and 50.1 % relatedness, respectively) and Halosarcina pallida BZ256T (37.6 and 42.1 % relatedness). It was concluded that strains RO1-4T and RO1-64 represent a novel species of the genus Halogeometricum, for which the name Halogeometricum rufum sp. nov. is proposed. The type strain is RO1-4T (=CGMCC 1.7736T =JCM 15770T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3975-3980 ◽  
Author(s):  
Xing-Xing Qiu ◽  
Yun-Zhuang Mou ◽  
Mei-Lin Zhao ◽  
Wen-Jiao Zhang ◽  
Dong Han ◽  
...  

Two halophilic archaeal strains, YC20T and XD15, were isolated from a marine solar saltern and an inland salt lake in China. Both had pleomorphic cells that lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. They were neutrophilic, requiring at least 100 g NaCl l−1 and 0.5–95 g MgCl2 l−1 for growth at the optimum growth temperature of 37 °C. The major polar lipids of the two strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified glycolipids were also detected. The 16S rRNA gene sequences of the two strains were 99.5 % identical and showed 94.0–95.9 % similarity to the most closely related members of the genus Halobellus of the family Halobacteriaceae . The rpoB′ gene sequence similarity between strains YC20T and XD15 was 98.2 % and these sequences showed 89.6–92.8 % similarity to those of the most closely related members of the genus Halobellus . The DNA G+C contents of strains YC20T and XD15 were 65.8 mol% and 65.4 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain XD15 was 92 %, and the two strains showed low DNA–DNA relatedness to members of the genus Halobellus . The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC20T and XD15 represent a novel species of the genus Halobellus , for which the name Halobellus inordinatus sp. nov. is proposed. The type strain is YC20T ( = CGMCC 1.12120T = JCM 18361T) and the other strain is XD15 ( = CGMCC 1.12236 = JCM 18648).


2011 ◽  
Vol 61 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Two extremely halophilic archaeal strains, TBN21T and TBN49, were isolated from the Taibei marine solar saltern near Lianyungang city, Jiangsu province, China. Cells of the two strains were pleomorphic and Gram-negative and colonies were red. Strains TBN21T and TBN49 were able to grow at 25–50 °C (optimum 37 °C), at 1.4–5.1 M NaCl (optimum 3.4–3.9 M) and at pH 5.5–9.5 (optimum pH 7.0–7.5) and neither strain required Mg2+ for growth. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of the two strains were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and eight glycolipids; three of these glycolipids (GL3, GL4 and GL5) were chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1), galactosyl mannosyl glucosyl diether (TGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Phylogenetic analysis revealed that strains TBN21T and TBN49 formed a distinct clade with their closest relative, Halobaculum gomorrense JCM 9908T (89.0–89.5 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains TBN21T and TBN49 were 64.8 and 62.7 mol%, respectively. DNA–DNA hybridization between strains TBN21T and TBN49 was 90.1 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains TBN21T and TBN49 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halolamina pelagica gen. nov., sp. nov. is proposed. The type strain of Halolamina pelagica is TBN21T ( = CGMCC 1.10329T  = JCM 16809T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2029-2033 ◽  
Author(s):  
Heng-Lin Cui ◽  
Wen-Jiao Zhang

Halophilic archaeal strain GX10T was isolated from the Gangxi marine solar saltern in China. Strain GX10T was observed to have pleomorphic cells that lysed in distilled water, stained Gram-negative and produced red-pigmented colonies. Strain GX10T was able to grow at 20–50 °C (optimum 37 °C), with 1.4–4.8 M NaCl (optimum 3.1 M NaCl), with 0–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.0–9.0 (optimum pH 7.0). The major polar lipids of strain GX10T were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, and five unidentified glycolipids. Phylogenetic tree reconstructions based on 16S rRNA gene and rpoB′ sequences revealed that strain GX10T was distinct from the related genera, Halogranum , Haloferax , Halopelagius , Halogeometricum , Halobellus , Haloplanus and Halorubrum . The DNA G+C content of strain GX10T was 62.9 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain GX10T represents a novel species of a new genus within the family Halobacteriaceae , for which the name Salinigranum rubrum gen. nov., sp. nov. is proposed. The type strain of the type species is GX10T ( = CGMCC 1.10385T = JCM 17116T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1824-1827 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin-Yi Li ◽  
Xue-Wei Xu ◽  
Yu-Guang Zhou ◽  
...  

An extremely halophilic archaeon, strain RO5-8T, was isolated from a disused marine solar saltern in China. The cells were pleomorphic and flat. In static liquid medium, cells floated to the surface. Strain RO5-8T stained Gram-negative and colonies were pink-pigmented. It was able to grow at 30–50 °C (optimum 40 °C), at 2.6–4.3 M NaCl (optimum 3.1 M NaCl), at 0.03–0.5 M MgCl2 (optimum 0.03 M MgCl2) and at pH 5.5–7.5 (optimum pH 6.0–6.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of strain RO5-8T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to the sulfated mannosyl glucosyl diether S-DGD-1. On the basis of 16S rRNA gene sequence analysis, strain RO5-8T was closely related to three strains of Haloplanus natans with similarities of 97.3–97.6 %. The DNA G+C content of strain RO5-8T was 62.1 mol%. The DNA–DNA hybridization value between strain RO5-8T and Haloplanus natans JCM 14081T was 51.6 %. It was concluded that strain RO5-8T represents a novel species of the genus Haloplanus, for which the name Haloplanus vescus sp. nov. is proposed. The type strain is RO5-8T (=CGMCC 1.8712T =JCM 16055T).


2011 ◽  
Vol 61 (4) ◽  
pp. 965-968 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin Yang ◽  
Xue-Wei Xu

Halophilic archaeal strain TBN37T was isolated from Taibei marine solar saltern near Lianyungang city of Jiangsu province, China. Cells were pleomorphic, flat and contained gas vesicles. Cells of strain TBN37T stained Gram-negative and the colonies were pink-pigmented. The strain was able to grow at 25–50 °C (optimum, 37–40 °C), with 1.4–5.1 M NaCl (optimum, 2.1 M NaCl), with 0–1.0 M MgCl2 (optimum, 0.01 M MgCl2) and at pH 6.0–9.0 (optimum, pH 7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of strain TBN37T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). On the basis of 16S rRNA gene sequence analysis, strain TBN37T was closely related to Haloplanus natans and Haloplanus vescus, with the same similarity of 97.4 %. The DNA G+C content of strain TBN37T is 64.1 mol%. DNA–DNA hybridization values between strain TBN37T and Haloplanus natans JCM 14081T and between strain TBN37T and Haloplanus vescus RO5-8T were 37.6 % and 42.1 %, respectively. It was concluded that strain TBN37T represents a novel species of the genus Haloplanus, for which the name Haloplanus aerogenes sp. nov. is proposed. The type strain is TBN37T ( = CGMCC 1.10124T  = JCM 16430T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2682-2689 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Xia Gao ◽  
Xue-Wei Xu

Four halophilic archaeal strains, designated TNN18T, TBN12, TNN28T and TBN19, were isolated from brines sampled from two artificial marine solar salterns in eastern China. Strains TNN18T and TNN28T were isolated from the Tainan marine solar saltern, whereas strains TBN12 and TBN19 were from the Taibei marine solar saltern. Colonies of the four strains were red-pigmented and their cells were pleomorphic, motile, Gram-reaction-negative rods. Strains TNN18T and TBN12 were able to grow at 25–50 °C (optimum 37 °C), in 10–30 % (w/v) NaCl (optimum 15 %), with 0–1.0 M MgCl2 (optimum 0.05 M) and at pH 5.5–9.0 (optimum pH 7.0–7.5), while strains TNN28T and TBN19 were able to grow at 20–50 °C (optimum 37 °C), in 15-30 % (w/v) NaCl (optimum 18–20 %), in 0.005–1.0 M MgCl2 (optimum 0.01–0.3 M) and at pH 6.0–9.0 (optimum pH 7.0–7.5). Cells of these strains lyse in distilled water; minimal NaCl concentrations to prevent cell-lysis are 10 % (w/v) for strains TNN18T and TBN12 and 12 % (w/v) for strains TNN28T and TBN19. The major polar lipids of strains TNN18T and TBN12 were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and one major glycolipid (GL1), which was chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). Minor amounts of other lipids (GL0, GL2, GL3 and GL4) were also detectable. The polar lipid profiles of strains TNN28T and TBN19 contained PG, PGP-Me, GL1, which was chromatographically identical to S-DGD-1, and three to four minor unidentified glycolipids (GL2–GL5). Phylogenetic analyses revealed that strains TNN18T and TBN12 formed a distinct clade with strains of the closest related species, Haloquadratum walsbyi (91.5–91.8 % 16S rRNA gene sequence similarity) and strains TNN28T and TBN19 formed a distinct clade with strains of the species Halosimplex carlsbadense (89.9–93.3 % similarity) and two members of the genus Halorhabdus (92.5–93.3 % similarity). The DNA G+C contents of strains TNN18T, TBN12, TNN28T and TBN19 were 61.5, 62.4, 61.9 and 61.5 mol%, respectively. DNA–DNA hybridization values between strains TNN18T and TBN12, and strains TNN28T and TBN19 were 82.9 % and 88.2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic properties suggest that the four strains represent two novel species of two new genera within the family Halobacteriaceae, for which the names Halobellus clavatus gen. nov., sp. nov. (type strain TNN18T  = CGMCC 1.10118T  = JCM 16424T) and Halorientalis regularis gen. nov., sp. nov. (type strain TNN28T  = CGMCC 1.10123T  = JCM 16425T) are proposed.


Author(s):  
Hye Jeong Kang ◽  
Min-Kyeong Kim ◽  
Su Gwon Roh ◽  
Seung Bum Kim

A Gram-stain-negative, oxidase-positive, catalase-positive, aerobic, orange-pigmented, rod-shaped and non-motile bacterium designated strain MMS17-SY002T was isolated from island soil. The isolate grew at 20–37 °C (optimum, 30 °C), at pH 6.0–9.5 (optimum, pH 7) and in the presence of 0.5–4.0 % (w/v) NaCl (optimum, 2.0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MMS17-SY002T was mostly related to the genus Muriicola of the family Flavobacteriaceae and had highest sequence similarity of 96.82 % to Muriicola marianensis A6B8T and Muriicola jejuensis EM44T, but formed a distinct phylogenetic line within the genus. Chemotaxonomic analyses showed that menaquinone 6 was the predominant isoprenoid quinone, the major fatty acids were iso-C15 : 1 G and iso-C15 : 0, and the diagnostic polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 42.4 mol%. Strain MMS17-SY002T could be distinguished from related species by the combination of trypsin, α-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase and β-glucosidase activities. The orthologous average nucleotide identity between the genomes of strain MMS17-SY002T and M. jejuensis and that between the strain and M. marianensis A6B8T were 73.26 and 73.33%, respectively, thus confirming the separation of the strain from related species at species level. Based on the phenotypic, phylogenetic, chemotaxonomic and genomic characterization, MMS17-SY002T should be recognized as a novel species of the genus Muriicola , for which the name Muriicola soli sp. nov. is proposed. The type strain is MMS17-SY002T (=KCTC 62790T=JCM 32370T).


Sign in / Sign up

Export Citation Format

Share Document