halophilic archaea
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 66)

H-INDEX

48
(FIVE YEARS 4)

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Alexander Flegler ◽  
André Lipski

AbstractCarotenoids have several crucial biological functions and are part of the cold adaptation mechanism of some bacteria. Some pink-pigmented Arthrobacter species produce the rare C50 carotenoid bacterioruberin, whose function in these bacteria is unclear and is found mainly in halophilic archaea. Strains Arthrobacter agilis DSM 20550T and Arthrobacter bussei DSM 109896T show an increased bacterioruberin content if growth temperature is reduced from 30 down to 10 °C. In vivo anisotropy measurements with trimethylammonium-diphenylhexatriene showed increased membrane fluidity and a broadening phase transition with increased bacterioruberin content in the membrane at low-temperature growth. Suppression of bacterioruberin synthesis at 10 °C using sodium chloride confirmed the function of bacterioruberin in modulating membrane fluidity. Increased bacterioruberin content also correlated with increased cell resistance to freeze–thaw stress. These findings confirmed the adaptive function of bacterioruberin for growth at low temperatures for pink-pigmented Arthrobacter species.


2021 ◽  
pp. 110906
Author(s):  
Wei Wei ◽  
Xinyu Hu ◽  
Sai Yang ◽  
Kaili Wang ◽  
Chunlin Zeng ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Madhan Tirumalai ◽  
Daniela Anane-Bediakoh ◽  
Siddharth Rajesh ◽  
George E. Fox

Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less so. Herein the analysis is extended to the non-archaeal halophilic bacteria, eukaryotes and halotolerant archaea. The net charges (pH 7.4) of r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that as a general rule, as the salt tolerance of the bacterial strains increased from 5 to 15%, the net charges of the individual proteins remained mostly basic. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18%-21% of salt for their growth. All three strains have a higher number of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins is a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions. They were positively charged despite the halophilicity of the organisms.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001442
Author(s):  
Ying Liu ◽  
Tatiana A. Demina ◽  
Simon Roux ◽  
Pakorn Aiewsakun ◽  
Darius Kazlauskas ◽  
...  

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counter defense mechanisms, illuminating common strategies of virus–host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1156
Author(s):  
Verónica Rodríguez-Herrero ◽  
Arnau Peris ◽  
Mónica Camacho ◽  
Vanesa Bautista ◽  
Julia Esclapez ◽  
...  

The genome of the halophilic archaea Haloferax mediterranei contains three ORFs that show homology with glutamine synthetase (GS) (glnA-1, glnA-2, and glnA-3). Previous studies have focused on the role of GlnA-1, suggesting that proteins GlnA-2 and GlnA-3 could play a different role to that of GS. Glutamine synthetase (EC 6.3.1.2) belongs to the class of ligases, including 20 subclasses of other different enzymes, such as aspartate–ammonia ligase (EC 6.3.1.1), glutamate–ethylamine ligase (EC 6.3.1.6), and glutamate–putrescine ligase (EC 6.3.1.11). The reaction catalyzed by glutamate–putrescine ligase is comparable to the reaction catalyzed by glutamine synthetase (GS). Both enzymes can bind a glutamate molecule to an amino group: ammonium (GS) or putrescine (glutamate–putrescine ligase). In addition, they present the characteristic catalytic domain of GS, showing significant similarities in their structure. Although these proteins are annotated as GS, the bioinformatics and experimental results obtained in this work indicate that the GlnA-2 protein (HFX_1688) is a glutamate–putrescine ligase, involved in polyamine catabolism. The most significant results are those related to glutamate–putrescine ligase’s activity and the analysis of the transcriptional and translational expression of the glnA-2 gene in the presence of different nitrogen sources. This work confirms a new metabolic pathway in the Archaea domain which extends the knowledge regarding the utilization of alternative nitrogen sources in this domain.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 442
Author(s):  
Jamseel Moopantakath ◽  
Madangchanok Imchen ◽  
Ranjith Kumavath ◽  
Rosa María Martínez-Espinosa

This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1723
Author(s):  
Wei Wei ◽  
Xin Zhang ◽  
Zhaozhi Hou ◽  
Xinyu Hu ◽  
Yuan Wang ◽  
...  

High salinity is an effective measure to preserve kelp, but salted kelp can still deteriorate after long-term preservation. In order to clarify the key conditions and microbial behavior of salted kelp preservation, 10% (S10), 20% (S20), and 30% (S30) salt concentrations were evaluated at 25 °C (T25) and 4 °C (T4). After 30 days storage, these salted kelps showed different states including rot (T25S10), softening (T25S20), and undamaged (other samples). By detecting polysaccharide lyase activity and performing high-throughput sequencing of the prokaryotic 16S rRNA sequence and metagenome, we found that deteriorated kelps (T25S10 and T25S20) had significantly higher alginate lyase activity and bacterial relative abundance than other undamaged samples. Dyella, Saccharophagus, Halomonas, Aromatoleum, Ulvibacter, Rhodopirellula, and Microbulbifer were annotated with genes encoding endonuclease-type alginate lyases, while Bacillus and Thiobacillus were annotated as the exonuclease type. Additionally, no alginate lyase activity was detected in undamaged kelps, whose dominant microorganisms were halophilic archaea without alginate lyase-encoding genes. These results indicated that room-temperature storage may promote salted kelp deterioration due to the secretion of bacterial alginate lyase, while ultra-high-salinity and low-temperature storage can inhibit bacterial alginate lyase and promote the growth of halophilic archaea without alginate lyase, thus achieving the preservation of salted kelp.


2021 ◽  
Vol 17 (7) ◽  
pp. 20210222
Author(s):  
Conor Rossi ◽  
Gabriela Ruß-Popa ◽  
Valeria Mattiangeli ◽  
Fionnuala McDaid ◽  
Andrew J. Hare ◽  
...  

Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrābād, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral ‘hairy’ allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the ‘hairy’, ‘fat-tailed’-genotyped sheep likely kept by the rural community of Chehrābād's miners.


Sign in / Sign up

Export Citation Format

Share Document