extremely halophilic archaea
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Madhan Tirumalai ◽  
Daniela Anane-Bediakoh ◽  
Siddharth Rajesh ◽  
George E. Fox

Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less so. Herein the analysis is extended to the non-archaeal halophilic bacteria, eukaryotes and halotolerant archaea. The net charges (pH 7.4) of r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that as a general rule, as the salt tolerance of the bacterial strains increased from 5 to 15%, the net charges of the individual proteins remained mostly basic. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18%-21% of salt for their growth. All three strains have a higher number of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins is a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions. They were positively charged despite the halophilicity of the organisms.


2020 ◽  
Vol 8 (12) ◽  
pp. 1903
Author(s):  
Robert Ruginescu ◽  
Ioana Gomoiu ◽  
Octavian Popescu ◽  
Roxana Cojoc ◽  
Simona Neagu ◽  
...  

Halophilic and halotolerant microorganisms represent promising sources of salt-tolerant enzymes that could be used in various biotechnological processes where high salt concentrations would otherwise inhibit enzymatic transformations. Considering the current need for more efficient biocatalysts, the present study aimed to explore the microbial diversity of five under- or uninvestigated salty lakes in Romania for novel sources of hydrolytic enzymes. Bacteria, archaea and fungi were obtained by culture-based approaches and screened for the production of six hydrolases (protease, lipase, amylase, cellulase, xylanase and pectinase) using agar plate-based assays. Moreover, the phylogeny of bacterial and archaeal isolates was studied through molecular methods. From a total of 244 microbial isolates, 182 (74.6%) were represented by bacteria, 22 (9%) by archaea, and 40 (16.4%) by fungi. While most bacteria synthesized protease and lipase, the most frequent hydrolase produced by fungi was pectinase. The archaeal isolates had limited hydrolytic activity, being able to produce only amylase and cellulase. Among the taxonomically identified isolates, the best hydrolytic activities were observed in halotolerant bacteria belonging to the genus Bacillus and in extremely halophilic archaea of the genera Haloterrigena and Halostagnicola. Therefore, the present study highlights that the investigated lakes harbor various promising species of microorganisms able to produce industrially valuable enzymes.


2020 ◽  
Vol 64 (4) ◽  
pp. 489-503
Author(s):  
Meral Birbir ◽  
Pinar Caglayan ◽  
Yasar Birbir

Proteolytic and lipolytic extremely halophilic archaea found in curing salt may contaminate skins during the brine curing process and damage skin structure. In the present study, three proteolytic and lipolytic extremely halophilic archaea were isolated from deteriorated salted sheepskins and characterised using conventional and molecular methods. Each test strain (Haloarcula salaria AT1, Halobacterium salinarum 22T6, Haloarcula tradensis 7T3), a mixed culture of these strains and the mixed culture treated with 1.5 A direct current (DC) were used for brine curing processes of fresh sheepskins and examined during 47 days of storage to evaluate the degree of destruction wreaked by these microorganisms. Both organoleptic properties and scanning electron microscopy (SEM) images of sheepskins proved that each separate test strain and the mixed culture caused serious damage. However, the mixed culture of strains treated with electric current did not damage sheepskin structure. Therefore, we highly recommend sterilisation of brine using DC to prevent archaeal damage on cured hides and skins in the leather industry.


2019 ◽  
Author(s):  
Yutian Feng ◽  
Uri Neri ◽  
Sean Gosselin ◽  
Artemis S. Louyakis ◽  
R. Thane Papke ◽  
...  

AbstractInterest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; while the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the halobacteriales, and archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (unrelated groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the crenarchaeota, euryarchaeota, and the DPANN superphylum. In addition, we sampled and assembled 7 new representatives of the Nanohaloarchaea, from distinct geographic locations. Phylogenies derived from these data imply the highly conserved ATP synthase catalytic/non-catalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. This relationship, with strong support, was also observed for several other gene families. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum. We employed phylogenetic reconstruction, constrained topology tests, and gene concordance factors to explore the support for and against the monophyly of the Haloarchaea, Nanohaloarchaea, and Methanonatronarchaeia.


2019 ◽  
Vol 8 (33) ◽  
Author(s):  
Priya DasSarma ◽  
Brian P. Anton ◽  
Satyajit L. DasSarma ◽  
Fabiana L. Martinez ◽  
Daniel Guzman ◽  
...  

Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.


2019 ◽  
Vol 8 (27) ◽  
Author(s):  
Shiladitya DasSarma ◽  
Alexey Fomenkov ◽  
Satyajit L. DasSarma ◽  
Tamas Vincze ◽  
Priya DasSarma ◽  
...  

ABSTRACT The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ∼4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).


Sign in / Sign up

Export Citation Format

Share Document