scholarly journals Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern

2010 ◽  
Vol 60 (6) ◽  
pp. 1366-1371 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Fang-Fang Sun ◽  
Ying Dong ◽  
Xue-Wei Xu ◽  
...  

Two extremely halophilic archaea, strains RO2-11T and HO2-1, were isolated from two Chinese marine solar salterns, Rudong solar saltern and Haimen solar saltern, respectively. Cells of the two strains were polymorphic and Gram-stain-negative; colonies were red-pigmented. The two strains grew at NaCl concentrations of 2.6–4.3 M (optimum 3.9 M) and required at least 0.1 M Mg2+ for growth. They were able to grow over a pH range of 6.0–8.0 and a temperature range of 20–50 °C, with optimal pH of 7.5 and optimal temperature of 37 °C. The major polar lipids of strain RO2-11T and strain HO2-1 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three glycolipids, two of them chromatographically identical to S-DGD-1 and DGD-1, the third unidentified. The 16S rRNA gene sequence similarity of strain RO2-11T and strain HO2-1 was 99.3 % and highest sequence similarity with the closest relative (Haloferax larsenii) was 91.4 %. Based on the data obtained, the two isolates could not be classified in any recognized genus of the family Halobacteriaceae. Strain RO2-11T and strain HO2-1 are thus considered to represent a novel species of a new genus within the family Halobacteriaceae, for which the name Halogranum rubrum gen. nov., sp. nov. is proposed. The type strain is RO2-11T (=CGMCC 1.7738T =JCM 15772T).

2010 ◽  
Vol 60 (9) ◽  
pp. 2089-2093 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin-Yi Li ◽  
Xia Gao ◽  
Xue-Wei Xu ◽  
Yu-Guang Zhou ◽  
...  

Two extremely halophilic archaea, strains RO5-2T and RO5-14, were isolated from Rudong marine solar saltern in Jiangsu, China. Cells of the two strains were pleomorphic, motile and stained Gram-negative. Colonies were red-pigmented. Strains RO5-2T and RO5-14 were able to grow at 20–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4–3.9 M NaCl), at 0.03–0.7 M MgCl2 (optimum 0.5 M MgCl2) and at pH 5.5–8.0 (optimum pH 6.5–7.0). Cells lyse in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1). The 16S rRNA gene sequences of strains RO5-2T and RO5-14 showed 93.4–93.8 % similarity to the closest cultivated relative, Halosarcina pallida. The DNA G+C content of strains RO5-2T and RO5-14 was 61.0 mol% and 59.9 mol%, respectively. The DNA–DNA relatedness between strains RO5-2T and RO5-14 was 86.0 %. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains RO5-2T and RO5-14 represent a novel species in a new genus within the family Halobacteriaceae, for which the name Halopelagius inordinatus gen. nov., sp. nov. is proposed. The type strain is RO5-2T (=CGMCC 1.7739T =JCM 15773T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 3975-3980 ◽  
Author(s):  
Xing-Xing Qiu ◽  
Yun-Zhuang Mou ◽  
Mei-Lin Zhao ◽  
Wen-Jiao Zhang ◽  
Dong Han ◽  
...  

Two halophilic archaeal strains, YC20T and XD15, were isolated from a marine solar saltern and an inland salt lake in China. Both had pleomorphic cells that lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. They were neutrophilic, requiring at least 100 g NaCl l−1 and 0.5–95 g MgCl2 l−1 for growth at the optimum growth temperature of 37 °C. The major polar lipids of the two strains were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and two major glycolipids chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1), respectively. Trace amounts of two unidentified glycolipids were also detected. The 16S rRNA gene sequences of the two strains were 99.5 % identical and showed 94.0–95.9 % similarity to the most closely related members of the genus Halobellus of the family Halobacteriaceae . The rpoB′ gene sequence similarity between strains YC20T and XD15 was 98.2 % and these sequences showed 89.6–92.8 % similarity to those of the most closely related members of the genus Halobellus . The DNA G+C contents of strains YC20T and XD15 were 65.8 mol% and 65.4 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain XD15 was 92 %, and the two strains showed low DNA–DNA relatedness to members of the genus Halobellus . The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC20T and XD15 represent a novel species of the genus Halobellus , for which the name Halobellus inordinatus sp. nov. is proposed. The type strain is YC20T ( = CGMCC 1.12120T = JCM 18361T) and the other strain is XD15 ( = CGMCC 1.12236 = JCM 18648).


2010 ◽  
Vol 60 (10) ◽  
pp. 2462-3466 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xia Gao ◽  
Xin-Yi Li ◽  
Xue-Wei Xu ◽  
Yu-Guang Zhou ◽  
...  

A halophilic archaeon, strain RO1-6T, was isolated from a marine solar saltern in eastern China. Cells of strain RO1-6T were pleomorphic and motile and stained Gram-negative. Strain RO1-6T grew well on complex medium and colonies were red-pigmented. It was able to grow at 20–50 °C (optimum 37 °C), in 2.1–5.1 M NaCl (optimum 3.9 M NaCl), in 0.05–0.70 M MgCl2 (optimum 0.30 M MgCl2) and at pH 6.5–8.0 (optimum pH 7.0). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 12 % (w/v). The major polar lipids of strain RO1-6T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and two glycolipids that were chromatographically identical to S-DGD-1 and S2-DGD. The 16S rRNA gene sequence of strain RO1-6T showed similarities of 96.9 and 96.4 % to those of the type strains of Halosarcina pallida and Halogeometricum borinquense, respectively, members of the most closely related recognized genera within the family Halobacteriaceae. The DNA G+C content of strain RO1-6T was 61.2 mol%. Phenotypic characterization and phylogenetic analysis revealed that strain RO1-6T is related to Halosarcina pallida and represents a novel species of the genus Halosarcina, for which the name Halosarcina limi sp. nov. is proposed; the type strain is RO1-6T (=CGMCC 1.8711T =JCM 16054T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1085-1089 ◽  
Author(s):  
Heng-Lin Cui ◽  
Fang-Fang Sun ◽  
Xia Gao ◽  
Ying Dong ◽  
Xue-Wei Xu ◽  
...  

Two extremely halophilic archaea, strains RO1-28T and RO1-22, were isolated from a marine solar saltern in Jiangsu, China. Both strains required at least 0.05 M Mg2+ and 1.7 M NaCl for growth. They were able to grow over a pH range of 6.0–8.5 and a temperature range of 25–55 °C, with optimal pH of 7.0 and optimal temperature of 37–40 °C. Based on 16S rRNA gene sequence analysis, strains RO1-28T and RO1-22 were closely related to Haladaptatus paucihalophilus, the single species of the genus Haladaptatus, with similarities of 94.0–95.2 %. The major polar lipids of the two strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and three glycolipids chromatographically identical to the glycolipids of Haladaptatus paucihalophilus JCM 13897T. Both strains RO1-28T and RO1-22 had a DNA G+C content of 54.0 mol% (HPLC). The DNA–DNA hybridization value between the two strains was more than 70 % (92 %) and both strains showed low levels of DNA–DNA relatedness (32 % and 33 %) with Haladaptatus paucihalophilus JCM 13897T. It was concluded that strains RO1-28T and RO1-22 represent a novel species of the genus Haladaptatus, for which the name Haladaptatus litoreus sp. nov. is proposed. The type strain is RO1-28T (=CGMCC 1.7737T =JCM 15771T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2682-2689 ◽  
Author(s):  
Heng-Lin Cui ◽  
Xin Yang ◽  
Xia Gao ◽  
Xue-Wei Xu

Four halophilic archaeal strains, designated TNN18T, TBN12, TNN28T and TBN19, were isolated from brines sampled from two artificial marine solar salterns in eastern China. Strains TNN18T and TNN28T were isolated from the Tainan marine solar saltern, whereas strains TBN12 and TBN19 were from the Taibei marine solar saltern. Colonies of the four strains were red-pigmented and their cells were pleomorphic, motile, Gram-reaction-negative rods. Strains TNN18T and TBN12 were able to grow at 25–50 °C (optimum 37 °C), in 10–30 % (w/v) NaCl (optimum 15 %), with 0–1.0 M MgCl2 (optimum 0.05 M) and at pH 5.5–9.0 (optimum pH 7.0–7.5), while strains TNN28T and TBN19 were able to grow at 20–50 °C (optimum 37 °C), in 15-30 % (w/v) NaCl (optimum 18–20 %), in 0.005–1.0 M MgCl2 (optimum 0.01–0.3 M) and at pH 6.0–9.0 (optimum pH 7.0–7.5). Cells of these strains lyse in distilled water; minimal NaCl concentrations to prevent cell-lysis are 10 % (w/v) for strains TNN18T and TBN12 and 12 % (w/v) for strains TNN28T and TBN19. The major polar lipids of strains TNN18T and TBN12 were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and one major glycolipid (GL1), which was chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). Minor amounts of other lipids (GL0, GL2, GL3 and GL4) were also detectable. The polar lipid profiles of strains TNN28T and TBN19 contained PG, PGP-Me, GL1, which was chromatographically identical to S-DGD-1, and three to four minor unidentified glycolipids (GL2–GL5). Phylogenetic analyses revealed that strains TNN18T and TBN12 formed a distinct clade with strains of the closest related species, Haloquadratum walsbyi (91.5–91.8 % 16S rRNA gene sequence similarity) and strains TNN28T and TBN19 formed a distinct clade with strains of the species Halosimplex carlsbadense (89.9–93.3 % similarity) and two members of the genus Halorhabdus (92.5–93.3 % similarity). The DNA G+C contents of strains TNN18T, TBN12, TNN28T and TBN19 were 61.5, 62.4, 61.9 and 61.5 mol%, respectively. DNA–DNA hybridization values between strains TNN18T and TBN12, and strains TNN28T and TBN19 were 82.9 % and 88.2 %, respectively. The phenotypic, chemotaxonomic and phylogenetic properties suggest that the four strains represent two novel species of two new genera within the family Halobacteriaceae, for which the names Halobellus clavatus gen. nov., sp. nov. (type strain TNN18T  = CGMCC 1.10118T  = JCM 16424T) and Halorientalis regularis gen. nov., sp. nov. (type strain TNN28T  = CGMCC 1.10123T  = JCM 16425T) are proposed.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2272-2276 ◽  
Author(s):  
Jun Xia ◽  
Yan-Xia Zhou ◽  
Li-Hua Zhao ◽  
Guan-Jun Chen ◽  
Zong-Jun Du

A bacterial strain, designated SYD6T, was isolated from a marine solar saltern on the coast of Weihai, Shandong Province, PR China. Cells of strain SYD6T were rod-shaped, red, and approximately 5.0–9.0 μm in length and 0.4–0.6 μm in width. The strain was Gram-stain-negative, facultatively anaerobic, heterotrophic, catalase-positive and oxidase-negative. Growth occurred in 4–25 % (w/v) NaCl [with 2–15 % (w/v) MgCl2.6H2O also present], at 20–50 °C and pH 6.5–8.5. Optimal growth was observed at 37–42 °C, pH 7.5–8.0, with 6–8 % (w/v) NaCl [with 2–4 % (w/v) MgCl2.6H2O]. Nitrate was not reduced. Glucose, sucrose, maltose, fructose and ribose stimulated growth, but not glycerol, xylose or mannitol. The G+C content of the genomic DNA was 61.5 mol% (HPLC). The sole methyl naphthoquinone was MK-7 and the predominant cellular fatty acids (>10 %) were iso-C15 : 0 2-OH/C16 : 1ω7c, iso-C16 : 0, C18 : 1ω7c/C18 : 1ω6c and C18 : 1ω7c. The predominant polar lipids were phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and an unknown lipid. Phylogenetic analysis, based on 16S rRNA gene sequences, demonstrated that strain SYD6T was affiliated with the phylum Bacteroidetes. The most closely related neighbours were species of the genus Salisaeta and strain SYD6T had a 16S rRNA gene sequence similarity of 91.97 % with Salisaeta longa DSM 21114T. On the basis of these phenotypic and phylogenetic data, strain SYD6T represents a novel species of a new genus of the family Rhodothermaceae, for which the name Longimonas halophila gen. nov., sp. nov. is proposed. The type strain of the type species is SYD6T ( = CICC 10838T = KCTC 42399T).


2011 ◽  
Vol 61 (11) ◽  
pp. 2734-2739 ◽  
Author(s):  
Chae-Sung Lim ◽  
Yong-Sik Oh ◽  
Jae-Kwan Lee ◽  
A-Rum Park ◽  
Jae-Soo Yoo ◽  
...  

A yellow-pigmented, Gram-staining-negative, non-motile, strictly aerobic and rod-shaped bacterium, designated CS100T, was isolated from soil in Chungbuk, Korea. Phylogenetic analysis and comparative studies based on the 16S rRNA gene sequence showed that strain CS100T belonged to the genus Flavobacterium in the family Flavobacteriaceae. Strain CS100T showed the highest sequence similarities to Flavobacterium glaciei JCM 13953T (97.6 %) and Flavobacterium johnsoniae KACC 11410T (97.1 %). Sequence similarity to other members of the genus Flavobacterium was 91.5–97.0 %. Growth occurred at 4–30 °C, at pH 5.0–9.0 and in the presence of 0–2 % (w/v) NaCl. Flexirubin-type pigments were produced. Menaquinone-6 (MK-6) was the major respiratory quinone and the major fatty acids were iso-C15 : 0 (17.3 %), summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 15.5 %) and C16 : 0 (11.8 %). The DNA G+C content was 36.4 mol%. Strain CS100T hydrolysed skimmed milk and gelatin, but not chitin or pectin, and showed oxidase and catalase activities. DNA–DNA relatedness was 3.0 % with F. glaciei JCM 13953T and 11.5 % with F. johnsoniae KACC 11410T. On the basis of the evidence from this study, strain CS100T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium chungbukense sp. nov. is proposed. The type strain is CS100T ( = KACC 15048T = JCM 17386T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4072-4079 ◽  
Author(s):  
Ryosuke Nakai ◽  
Tomoya Baba ◽  
Hironori Niki ◽  
Miyuki Nishijima ◽  
Takeshi Naganuma

A Gram-stain-positive, aerobic, non-motile, curved (selenoid), rod-shaped actinobacterium, designated KNCT, was isolated from the 0.2 μm-filtrate of river water in western Japan. Cells of strain KNCT were ultramicrosized (0.04–0.05 μm3). The strain grew at 15–37 °C, with no observable growth at 10 °C or 40 °C. The pH range for growth was 7–9, with weaker growth at pH 10. Growth was impeded by the presence of NaCl at concentrations greater than 1 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KNCT showed relatively high sequence similarity (97.2 %) to Alpinimonas psychrophila Cr8-25T in the family Microbacteriaceae. However, strain KNCT formed an independent cluster with cultured, but as-yet-unidentified, species and environmental clones on the phylogenetic tree. The major cellular fatty acids were anteiso-C15 : 0 (41.0 %), iso-C16 : 0 (21.8 %), C16 : 0 (18.0 %) and anteiso-C17 : 0 (12.9 %), and the major menaquinones were MK-11 (71.3 %) and MK-12 (13.6 %). The major polar lipids were phosphatidylglycerol and two unknown glycolipids. The cell-wall muramic acid acyl type was acetyl. The peptidoglycan was B-type, and contained 3-hydroxyglutamic acid, glutamic acid, aspartic acid, glycine, alanine and lysine, with the latter being the diagnostic diamino acid. The G+C content of the genome was unusually low for actinobacteria (52.1 mol%), compared with other genera in the family Microbacteriaceae. Based on the phenotypic characteristics and phylogenetic evidence, strain KNCT represents a novel species of a new genus within the family Microbacteriaceae, for which the name Aurantimicrobium minutum gen. nov., sp. nov. is proposed. The type strain of the type species is KNCT ( = NBRC 105389T = NCIMB 14875T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


Sign in / Sign up

Export Citation Format

Share Document