scholarly journals Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga

2010 ◽  
Vol 60 (11) ◽  
pp. 2596-2600 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Soon-Wo Kwon ◽  
Jung-A Son ◽  
Eun-Hye Jo ◽  
Soo-Jin Kim ◽  
...  

Two bacterial strains, 5420S-12T and 5420S-16T, isolated from air samples, were characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 5420S-12T was related phylogenetically to Microvirga subterranea FaiI4T (97.4 % sequence similarity) and Microvirga guangxiensis 25BT (97.1 %) and that strain 5420S-16T was closely related to Balneimonas flocculans TFBT (98.0 %) and Microvirga guangxiensis 25BT (97.2 %). The G+C content of the genomic DNA was 62.2 mol% for strain 5420S-12T and 61.5 mol% for strain 5420S-16T. The major fatty acid was C18 : 1 ω7c. The results of DNA–DNA hybridization and the phenotypic data showed that strains 5420S-12T and 5420S-16T could be distinguished from phylogenetically related species and represent two novel species within the genus Microvirga, for which the names Microvirga aerophila sp. nov. (type strain 5420S-12T =KACC 12743T =NBRC 106136T) and Microvirga aerilata sp. nov. (type strain 5420S-16T =KACC 12744T =NBRC 106137T) are proposed. Furthermore, the reclassification of Balneimonas flocculans as Microvirga flocculans comb. nov. (type strain TFBT =JCM 11936T =KCTC 12101T =IAM 15034T =ATCC BAA-817T) is proposed and an emended description of the genus Microvirga is provided.

2011 ◽  
Vol 61 (12) ◽  
pp. 2874-2879 ◽  
Author(s):  
Soon-Wo Kwon ◽  
Jung-A Son ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
In-Cheol Park ◽  
...  

Two bacterial strains, 01-96T and 15-51T, isolated from rhizosphere soil of Chinese cabbage (Brassica campestris) were characterized by using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 01-96T was phylogenetically related most closely to Pedobacter suwonensis 15-52T and Pedobacter roseus CL-GP80T (96.7 and 96.7 % similarity, respectively), and strain 15-51T to Pedobacter borealis G-1T and P. suwonensis 15-52T (97.2 and 97.1 %, respectively). However, levels of DNA–DNA relatedness between strain 15-51T and P. borealis KACC 14287T and P. suwonensis KACC 11317T were low (<50 %). The G+C content of the genomic DNA was 37.8 mol% for strain 01-96T and 38.6 mol% for strain 15-51T. The major fatty acids of the two strains were iso-C17 : 0 3-OH, iso-C15 : 0 and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). The results of DNA–DNA hybridization and phenotypic data showed that strains 01-96T and 15-51T could be distinguished from their closest phylogenetic relatives, and that these strains represented two novel species of the genus Pedobacter, for which the names Pedobacter rhizosphaerae sp. nov. (type strain 01-96T  = KACC 14938T  = NBRC 107690T) and Pedobacter soli sp. nov. (type strain 15-51T  = KACC 14939T  = NBRC 107691T) are proposed.


2007 ◽  
Vol 57 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Min-Kyeong Kim ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial strains, designated GH34-4T and GH41-7T, were isolated from greenhouse soil cultivated with cucumber. The bacteria were strictly aerobic, Gram-negative, rod-shaped and oxidase- and catalase-positive. 16S rRNA gene sequence analysis indicated that these strains belong to the genus Lysobacter within the Gammaproteobacteria. Strain GH34-4T showed highest sequence similarity to Lysobacter yangpyeongensis GH19-3T (97.5 %) and Lysobacter koreensis Dae16T (96.4 %), and strain GH41-7T showed highest sequence similarity to Lysobacter antibioticus DSM 2044T (97.5 %), Lysobacter enzymogenes DSM 2043T (97.5 %) and Lysobacter gummosus ATCC 29489T (97.4 %). Levels of DNA–DNA relatedness indicated that strains GH34-4T and GH41-7T represented species clearly different from L. yangpyeongensis, L. antibioticus, L. enzymogenes and L. gummosus. The major cellular fatty acids of strains GH34-4T and GH41-7T were iso-C16 : 0, iso-C15 : 0 and iso-C17 : 1 ω9c, and the major isoprenoid quinone was Q-8. The DNA G+C contents of GH34-4T and GH41-7T were 62.5 and 66.6 mol%, respectively. On the basis of the polyphasic taxonomic data presented, it is evident that each of these strains represents a novel species of the genus Lysobacter, for which the names Lysobacter niabensis sp. nov. (type strain GH34-4T=KACC 11587T=DSM 18244T) and Lysobacter niastensis sp. nov. (type strain GH41-7T=KACC 11588T=DSM 18481T) are proposed.


2007 ◽  
Vol 57 (8) ◽  
pp. 1788-1792 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-negative, non-motile and rod-, oval- or coccoid-shaped bacterial strain, DSW-25T, which is phylogenetically closely related to the genera Staleya and Sulfitobacter, was isolated from seawater of the East Sea, Korea, and subjected to a polyphasic taxonomic study. Strain DSW-25T grew optimally at pH 7.0–8.0 and at 25 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. Major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content was 56.9 mol%. Strain DSW-25T exhibited 16S rRNA gene sequence similarity values of 98.4 % to the type strain of Staleya guttiformis and of 96.6–97.6 % to Sulfitobacter species. There were no distinct phenotypic, particularly chemotaxonomic, properties to differentiate Staleya guttiformis and strain DSW-25T from the genus Sulfitobacter. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain DSW-25T differs from recognized Sulfitobacter species and Staleya guttiformis. On the basis of phenotypic, chemotaxonomic, phylogenetic and genetic data, strain DSW-25T was classified in the genus Sulfitobacter as a member of a novel species, for which the name Sulfitobacter donghicola sp. nov. is proposed. The type strain is strain DSW-25T (=KCTC 12864T =JCM 14565T). It is also proposed that Staleya guttiformis be transferred to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov.


2006 ◽  
Vol 56 (11) ◽  
pp. 2657-2663 ◽  
Author(s):  
Ludmila Tvrzová ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
Ivo Sedláček ◽  
Zdena Páčová ◽  
...  

Two strains of Gram-negative bacteria isolated from soil by selective enrichment with nitroaromatics were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence analysis, the two strains were found to belong to the genus Pseudomonas, within the Gammaproteobacteria. Strain 1B4T shared the highest sequence similarity with Pseudomonas koreensis DSM 16610T (99.5 %) and Pseudomonas jessenii CCM 4840T (99.3 %), and strain 2B2T with Pseudomonas asplenii DSM 17133T (98.9 %), Pseudomonas fuscovaginae DSM 7231T (98.9 %) and Pseudomonas putida DSM 291T (98.7 %). On the basis of phylogenetic analysis, DNA–DNA hybridization and phenotype, including chemotaxonomic characteristics, two novel species, Pseudomonas moraviensis sp. nov. with the type strain 1B4T (=CCM 7280T=DSM 16007T) and Pseudomonas vranovensis sp. nov. with the type strain 2B2T (=CCM 7279T=DSM 16006T), are proposed. The description of P. asplenii was emended on the basis of additional data obtained in this study.


2006 ◽  
Vol 56 (7) ◽  
pp. 1645-1649 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Sylvie Cousin ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two yellow-pigmented, Gram-negative, rod-shaped bacterial strains, GH1-10T and GH29-5T, were isolated from greenhouse soils in Korea. 16S rRNA gene sequence analysis indicated that these strains were related to members of the genus Flavobacterium. Strain GH1-10T was most closely related to Flavobacterium psychrolimnae and Flavobacterium denitrificans, with sequence similarities of 95.9 and 95.2 %, respectively. Strain GH29-5T was most closely related to ‘Flavobacterium saliodium’, F. denitrificans and Flavobacterium frigoris, with sequence similarities of 94.3, 92.5 and 92.5 %, respectively. The major cellular fatty acids of GH1-10T were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH, and those of GH29-5T were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 3-OH. Both strains contained menaquinone with six isoprene units (MK-6) as the sole quinone. The DNA G+C contents of GH1-10T and GH29-5T were 35 and 39 mol%, respectively. Based on the phylogenetic and phenotypic data presented, it is concluded that the two bacteria represent two separate novel species of the genus Flavobacterium. The names proposed to accommodate these organisms are Flavobacterium daejeonense sp. nov., with type strain GH1-10T (=KACC 11422T=DSM 17708T), and Flavobacterium suncheonense sp. nov., with type strain GH29-5T (=KACC 11423T=DSM 17707T).


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246533
Author(s):  
Mo Ping ◽  
Zhao Yun-Lin ◽  
Liu Jun ◽  
Gao Jian ◽  
Xu Zheng-Gang

The taxonomic relationship of Lentzea atacamensis and Lentzea deserti were re-evaluated using comparative genome analysis. The 16S rRNA gene sequence analysis indicated that the type strains of L. atacamensis and L. deserti shared 99.7% sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the genomes of two type strains were 88.6% and 98.8%, respectively, greater than the two recognized thresholds values of 70% dDDH and 95–96% ANI for bacterial species delineation. These results suggested that L. atacamensis and L. deserti should share the same taxonomic position. And this conclusion was further supported by similar phenotypic and chemotaxonomic features between them. Therefore, we propose that L. deserti is a later heterotypic synonym of L. atacamensis.


2006 ◽  
Vol 56 (4) ◽  
pp. 815-819 ◽  
Author(s):  
P. Kämpfer ◽  
K. Denger ◽  
A. M. Cook ◽  
S.-T. Lee ◽  
U. Jäckel ◽  
...  

Comparative 16S rRNA gene sequence analysis indicates that two distinct sublineages exist within the genus Alcaligenes: the Alcaligenes faecalis lineage, comprising Alcaligenes aquatilis and A. faecalis (with the three subspecies A. faecalis subsp. faecalis, A. faecalis subsp. parafaecalis and A. faecalis subsp. phenolicus), and the Alcaligenes defragrans lineage, comprising A. defragrans. This phylogenetic discrimination is supported by phenotypic and chemotaxonomic differences. It is proposed that the A. defragrans lineage constitutes a distinct genus, for which the name Castellaniella gen. nov. is proposed. The type strain for Castellaniella defragrans gen. nov., comb. nov. is 54PinT (=CCUG 39790T=CIP 105602T=DSM 12141T). Finally, on the basis of data from the literature and new DNA–DNA hybridization and phenotypic data, the novel species Castellaniella denitrificans sp. nov. (type strain NKNTAUT=DSM 11046T=CCUG 39541T) is proposed for two strains previously identified as strains of A. defragrans.


2005 ◽  
Vol 55 (1) ◽  
pp. 463-466 ◽  
Author(s):  
Wen-Jun Li ◽  
Hua-Hong Chen ◽  
Chang-Jin Kim ◽  
Yu-Qin Zhang ◽  
Dong-Jin Park ◽  
...  

Two novel actinobacteria isolates, designated YIM 70009T and YIM 70081T, were characterized in order to determine their taxonomic position. Cells of strains YIM 70009T and YIM 70081T were cocci, although only the latter were motile. The G+C contents of their DNAs were 64·0 and 64·5 mol%, respectively. On the basis of chemotaxonomic characteristics and 16S rRNA gene sequence analysis, the two isolates were classified in the genus Nesterenkonia. DNA–DNA hybridization and comparison of phenotypic characteristics revealed that strains YIM 70009T and YIM 70081T differed from each other and from known species. Therefore, it is proposed that they represent two separate novel species of the genus Nesterenkonia: Nesterenkonia sandarakina sp. nov. (type strain, YIM 70009T=CCTCC AA 203007T=DSM 15664T=KCTC 19011T) and Nesterenkonia lutea sp. nov. (type strain, YIM 70081T=CCTCC AA 203010T=DSM 15666T=KCTC 19013T).


2007 ◽  
Vol 57 (5) ◽  
pp. 923-931 ◽  
Author(s):  
Beatriz Cámara ◽  
Carsten Strömpl ◽  
Susanne Verbarg ◽  
Cathrin Spröer ◽  
Dietmar H. Pieper ◽  
...  

Three bacterial strains, designated MT1T, RW10T and IpA-2T, had been isolated previously for their ability to degrade chlorosalicylates or isopimaric acid. 16S rRNA gene sequence analysis demonstrated that these bacteria are related to species of the genus Pseudomonas. Analysis of the results of DNA–DNA hybridization with several close phylogenetic neighbours revealed a low level of hybridization (less than 57 %). On the basis of phenotypic characteristics, phylogenetic analysis, DNA–DNA relatedness data and chemotaxonomic analysis, it is concluded that these isolates represent separate novel species, for which the names Pseudomonas reinekei sp. nov. (type strain MT1T =DSM 18361T=CCUG 53116T), Pseudomonas moorei sp. nov. (type strain RW10T =DSM 12647T=CCUG 53114T) and Pseudomonas mohnii sp. nov. (type strain IpA-2T =DSM 18327T=CCUG 53115T) are proposed.


2010 ◽  
Vol 60 (3) ◽  
pp. 591-594 ◽  
Author(s):  
Hye Soon Kang ◽  
Soon Dong Lee

An aerobic, Gram-reaction-negative, non-motile, catalase- and oxidase-positive bacterium, designated strain MDSW-25T, was isolated from seaweed collected in the vicinity of Mara Island in Jeju province, Republic of Korea. Colonies were smooth, circular and convex with entire edges and yellow in colour. Growth occurred at 10–30 °C, at pH 6.1–9.1 and in the presence of 1–12 % (w/v) NaCl. The major fatty acids were iso-C15 : 0 (25.6 %) and iso-C15 : 1 G (11.3 %), and the major menaquinone was MK-6. The DNA G+C content was 30.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MDSW-25T belonged to the genus Mesonia, family Flavobacteriaceae. Sequence similarity with Mesonia mobilis and Mesonia algae was 97.5 and 95.4 %, respectively, but DNA relatedness between strain MDSW-25T and M. mobilis KCTC 12708T was only 47 %. A battery of phenotypic data, phylogenetic inference and DNA–DNA hybridization analyses supports the conclusion that strain MDSW-25T (=KCTC 22373T =DSM 21425T) represents a novel species of the genus Mesonia, for which the name Mesonia phycicola sp. nov. is proposed. On the basis of new data obtained in this study, an emended description of the genus Mesonia is also proposed.


Sign in / Sign up

Export Citation Format

Share Document