scholarly journals Gangjinia marincola gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae

2011 ◽  
Vol 61 (2) ◽  
pp. 325-329 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sung-Ran Moon ◽  
Young-Hyun Park ◽  
Young Sun Lee ◽  
Jae Sung Jung ◽  
...  

A novel strictly aerobic, orange-pigmented, Gram-stain-negative bacterium, designated strain GJ16T, was isolated from coastal seawater of Gangjin Bay, the southernmost part of the Korean peninsula, and subjected to a polyphasic taxonomic study. It grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of 3 % NaCl. Comparative 16S rRNA gene sequence analysis revealed that strain GJ16T formed a distinct lineage within the family Flavobacteriaceae and shared less than 91.2 % 16S rRNA gene sequence similarity with members of the genera Leptobacterium, Zhouia, Winogradskyella, Dokdonia and Krokinobacter. The predominant cellular fatty acids were iso-C15 : 0 (40.2 %), iso-C15 : 1 G (12.8 %), iso-C17 : 0 3-OH (11.2 %) and C15 : 0 (6.6 %). The G+C content of the genomic DNA was 39.4 mol% and the major respiratory isoprenoid quinone was MK-6. On the basis of phenotypic and genotypic data, strain GJ16T represents a novel species in a new genus in the family Flavobacteriaceae, for which the name Gangjinia marincola gen. nov., sp. nov. is proposed; the type strain is GJ16T (=KCTC 22649T =JCM 16082T).

2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Evie De Brandt ◽  
Peter Vandamme ◽  
...  

Two bacterial strains (SC-089T and SC-092T) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1 % (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089T and SC-092T, which shared 99.1 % 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA–DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089T = LMG 24812T = CCUG 55806T) and Candidimonas humi sp. nov. (type strain, SC-092T = LMG 24813T = CCUG 55807T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1534-1538 ◽  
Author(s):  
Ji Young Jung ◽  
Jeong Myeong Kim ◽  
Hyun Mi Jin ◽  
Sun Young Kim ◽  
Woojun Park ◽  
...  

A heterotrophic, Gram-negative, prosthecate bacterium, designated strain G5T, was isolated from a sandy beach of Taean in South Korea. Cells of strain G5T were aerobic, catalase- and oxidase-positive, straight to slightly curved motile rods with a single flagellum and formed yellow–orange colonies on agar. Growth occurred at 15–40 °C (optimum 25–30 °C) and pH 6–9 (optimum pH 7–8). The major cellular fatty acids were C18 : 1ω7c, C17 : 0, C16 : 0, 11-methyl C18 : 1ω7c, C17 : 1ω8c and C17 : 1ω6c. The polar lipid pattern indicated the presence of phosphatidylglycerol, monoglycosyldiglyceride, glucuronopyranosyldiglyceride and two unidentified glycolipids. The G+C content of the genomic DNA was 63.6 mol% and the major quinone was Q-10. Comparative 16S rRNA gene sequence analysis showed that strain G5T belonged to the branch containing the genera Hellea, Robiginitomaculum and Hypomonas within the family Hyphomonadaceae. Within this group, strain G5T was most closely related to Hellea balneolensis 26III/A02/215T with 95.8 % 16S rRNA gene sequence similarity. Based on its phylogenetic position and its phenotypic, chemotaxonomic and molecular properties, strain G5T represents a novel species of a novel genus of the family Hyphomonadaceae, for which the name Litorimonas taeanensis gen. nov., sp. nov. is proposed. The type strain is G5T ( = KACC 13701T  = DSM 22008T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2951-2959 ◽  
Author(s):  
Timofey A. Pankratov ◽  
Svetlana N. Dedysh

Five strains of strictly aerobic, heterotrophic bacteria that form pink–red colonies and are capable of hydrolysing pectin, xylan, laminarin, lichenan and starch were isolated from acidic Sphagnum peat bogs and were designated OB1010T, LCBR1, TPB6011T, TPB6028T and TPO1014T. Cells of these isolates were Gram-negative, non-motile rods that produced an amorphous extracellular polysaccharide-like substance. Old cultures contained spherical bodies of varying sizes, which represent starvation forms. Cells of all five strains were acidophilic and psychrotolerant, capable of growth at pH 3.0–7.5 (optimum pH 3.8–4.5) and at 2–33 °C (optimum 15–22 °C). The major fatty acids were iso-C15 : 0, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). The major menaquinone detected was MK-8. The pigments were carotenoids. The genomic DNA G+C contents were 57.3–59.3 mol%. The five isolates were found to be members of subdivision 1 of the phylum Acidobacteria and displayed 95.3–98.9 % 16S rRNA gene sequence similarity to each other. The closest described relatives to strains OB1010T, LCBR1, TPB6011T, TPB6028T, and TPO1014T were members of the genera Terriglobus (94.6–95.8 % 16S rRNA gene sequence similarity) and Edaphobacter (94.2–95.4 %). Based on differences in cell morphology, phenotypic characteristics and hydrolytic capabilities, we propose a novel genus, Granulicella gen. nov., containing four novel species, Granulicella paludicola sp. nov. with type strain OB1010T (=DSM 22464T =LMG 25275T) and strain LCBR1, Granulicella pectinivorans sp. nov. with type strain TPB6011T (=VKM B-2509T =DSM 21001T), Granulicella rosea sp. nov. with type strain TPO1014T (=DSM 18704T =ATCC BAA-1396T) and Granulicella aggregans sp. nov. with type strain TPB6028T (=LMG 25274T =VKM B-2571T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3155-3161 ◽  
Author(s):  
Jong-Hwa Kim ◽  
Maytiya Konkit ◽  
Jung-Hoon Yoon ◽  
Wonyong Kim

A Gram-stain-negative, aerobic, non-motile, non-spore-forming and short rod-shaped bacterial strain, designated CAU 1121T, was isolated from reclaimed land in the Republic of Korea and its taxonomic position was investigated using a polyphasic approach. The bacterium grew optimally at 37 °C, at pH 6.5 and in the presence of 2 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the novel isolate belonged to the family Rhodospirillaceae within the class Alphaproteobacteria and formed an independent lineage within the evolutionary radiation encompassed by the phylum Proteobacteria. Strain CAU 1121T exhibited very low levels of 16S rRNA gene sequence similarity with its phylogenetic neighbours Pelagibius litoralis (similarity, 92.5 %), Fodinicurvata fenggangensis (similarity, 91.4 %), Fodinicurvata sediminis (similarity, 90.7 %) and Tistlia consotensis (similarity, 91.0 %). Strain CAU 1121T contained ubiquinone-10 as the only respiratory quinone and C18 : 1ω7c as the major cellular fatty acid. The DNA G+C content of the strain was 65 mol%. On the basis of phylogenetic inference, and physiological and chemotaxonomic data, it is proposed that strain CAU 1121T represents a novel genus and novel species in the family Rhodospirillaceae, for which the name Limibacillus halophilus gen. nov., sp. nov. is suggested. The type strain is CAU 1121T ( = KCTC 42420T = CECT 8803T = NBRC 110928T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2453-2458 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yanliu Yang ◽  
Shuang Wang ◽  
Zhilei Sun ◽  
Kailin Jiao

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated strain F15T, was isolated from a deep-sea sediment of the western Pacific Ocean. The temperature, pH and NaCl ranges for growth were 4–50 °C, pH 6–11 and 0–10 % (w/v), respectively. Strain F15T showed the highest 16S rRNA gene sequence similarity to Sagittula stellata E-37T (96.4 %), followed by Ponticoccus litoralis CL-GR66T (96.4 %), Antarctobacter heliothermus EL-219T (96.3 %) and Thalassococcus lentus YCS-24T (96.0 %). Phylogenetic analysis based on 16S rRNA gene sequence data showed that strain F15T formed a lineage within the family Rhodobacteraceae of the class Alphaproteobacteria. The polar lipid profile of strain F15T comprised significant amounts of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified phospholipid. The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 40.2 %), anteiso-C15 : 0 (30.4 %) and anteiso-C17 : 0 (9.7 %). The genomic DNA G+C content of strain F15T was 60.2 mol% and the major respiratory quinone was Q-10. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain F15T is considered to represent a novel species of a new genus within the family Rhodobacteraceae, for which the name Alkalimicrobium pacificum gen. nov., sp. nov. is proposed. The type strain is F15T ( = LMG 28107T = JCM 19851T = CGMCC 1.12763T = MCCC 1A09948T).


Sign in / Sign up

Export Citation Format

Share Document