scholarly journals Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems

2011 ◽  
Vol 61 (6) ◽  
pp. 1334-1337 ◽  
Author(s):  
P. Kämpfer ◽  
P. D. Rekha ◽  
P. Schumann ◽  
A. B. Arun ◽  
Chiu-Chung Young ◽  
...  

A Gram-reaction-positive, rod-shaped bacterium, designated strain CC-VM-YT, was isolated from the faeces of the pill millipede Arthrosphaera magna Attems from India and was subsequently studied to determine its taxonomic position. Based on16S rRNA gene sequence similarities, the isolate clearly grouped with members of the genus Microbacterium. On the basis of pairwise comparisons of the 16S rRNA gene sequences, strain CC-VM-YT was most closely related to Microbacterium insulae DS-66T (98 %), Microbacterium hydrocarbonoxydans DSM 160809T (97.8 %) and Microbacterium hominis NBRC 15708T (97.9 %). The peptidoglycan contained the amino acids ornithine (Orn), alanine (Ala), glycine (Gly), homoserine (Hsr) and glutamic acid (Glu) in an approximate molar ratio of 1.0 : 0.8 : 2.2 : 0.8 : 0.3. In addition, substantial amounts of threo-3-hydroxy glutamic acid (Hyg) were detected, which is characteristic of peptidoglycan type B2β. The acyl type of the peptidoglycan was glycolyl. The menaquinones of strain CC-VM-YT were MK-13 (72 %), MK-12 (25 %) and MK-11 (3 %). The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, one unknown phospholipid and one unknown glycolipid. The fatty acid profile comprised anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as the major fatty acids, which was congruent with fatty acid profiles of other members of the genus Microbacterium. The results of physiological and biochemical tests as well as DNA–DNA hybridizations with the most closely related species, M. insulae, M. hydrocarbonoxydans and M. hominis, revealed clear phenotypic and genotypic differences between strain CC-VM-YT and other members of the genus Microbacterium. Based on these results, strain CC-VM-YT ( = DSM 22421T  = CCM 7681T) represents a new species of the genus Microbacterium, for which the name Microbacterium arthrosphaerae sp. nov. is proposed.

2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2485-2489 ◽  
Author(s):  
P. Kämpfer ◽  
A. B. Arun ◽  
Chiu-Chung Young ◽  
P. D. Rekha ◽  
K. Martin ◽  
...  

A Gram-negative, non-spore-forming rod (CC-LN1-12T) was isolated from coastal soil samples of Lutao Island (Green Island), Taiwan, and its taxonomic position was studied. 16S rRNA gene sequence analysis showed that isolate CC-LN1-12T was grouped into the Microbulbifer cluster, with the highest similarities to Microbulbifer okinawensis ABABA23T (97.9 %), Microbulbifer maritimus TF-17T (97.7 %) and Microbulbifer donghaiensis CN85T (97.7 %), similarities to all other species of the genus Microbulbifer were lower than 96.8 %. The polyamine pattern contained the major compounds spermidine and cadaverine. The fatty acid profile, comprising the major fatty acids iso-C15 : 0, iso-C17 : 1ω9c, C18 : 1ω7c and iso-C11 : 0 3-OH as the major hydroxylated fatty acid, supported the affiliation of strain CC-LN1-12T to the genus Microbulbifer . DNA–DNA hybridizations between strain CC-LN1-12T and Microbulbifer okinawensis ABABA23T, M. donghaiensis CN85T and M. maritimus JCM 12187T resulted in relatedness values of 21.5 % (14.3 %, reciprocal analysis), 35.9 % (48.5 %, reciprocal analysis) and 48.1 % (52.1 %, reciprocal analysis), respectively. From these data, as well as from physiological and biochemical tests, strain CC-LN1-12T could be clearly differentiated from the most closely related species of the genus Microbulbifer . It is concluded that strain CC-LN1-12T represents a novel species, for which the name Microbulbifer taiwanensis sp. nov. is proposed. The type strain is CC-LN1-12T ( = LMG 26125T = CCM 7856T).


2010 ◽  
Vol 60 (4) ◽  
pp. 824-827 ◽  
Author(s):  
P. Kämpfer ◽  
Chiu-Chung Young ◽  
H.-J. Busse ◽  
Jiunn-Nan Chu ◽  
P. Schumann ◽  
...  

A Gram-stain-positive, coccoid, non-endospore-forming actinobacterium (strain CC-12602T) was isolated from a spawn used for growing the edible mushroom Agaricus brasiliensis in the laboratory. On the basis of 16S rRNA gene sequence analysis, strain CC-12602T was shown to belong to the genus Microlunatus and was related most closely to the type strains of Microlunatus ginsengisoli (96.1 % similarity), M. phosphovorus (95.9 %), M. panaciterrae (95.8 %) and M. aurantiacus (95.5 %). The quinone system comprised menaquinone MK-9(H4) as the major component and the polyamine pattern consisted of spermidine and spermine as major compounds. The predominant polar lipids were phosphatidylglycerol and unknown phospholipid PL3. Moderate amounts of diphosphatidylglycerol, an unknown glycolipid and three unknown phospholipids and minor amounts of an unknown phospholipid and a polar lipid were detected. The peptidoglycan type was A3γ′, based on ll-2,6-diaminopimelic acid with an interpeptide bridge consisting of a single glycine residue and a second glycine residue at position 1 of the peptide subunit. Peptidoglycan structure and major fatty acids (anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0) supported the affiliation of strain CC-12602T to the genus Microlunatus. The results of physiological and biochemical tests allowed strain CC-12602T to be differentiated phenotypically from recognized Microlunatus species. Strain CC-12602T is therefore considered to represent a novel species of the genus Microlunatus, for which the name Microlunatus soli sp. nov. is proposed. The type strain is CC-12602T (=DSM 21800T =CCM 7685T).


2010 ◽  
Vol 60 (2) ◽  
pp. 271-274 ◽  
Author(s):  
Jenny Schäfer ◽  
Karin Martin ◽  
Peter Kämpfer

A Gram-positive, coccoid-shaped organism (strain 02-Je-010T), forming yellow-pigmented colonies was isolated from the wall of an indoor environment. On the basis of 16S rRNA gene sequence similarity studies, it was shown that strain 02-Je-010T belongs to the genus Citricoccus with sequence similarities of 98.9 % to Citricoccus alkalitolerans DSM 15665T and 98.6 % to Citricoccus muralis DSM 14442T. Cell-wall sugars were mannose and glucose. The diagnostic diamino acid of the peptidoglycan was lysine. The major menaquinones detected were MK-9(H2) and MK-8(H2). The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol and moderate amounts of two unknown phospholipids and two unknown glycolipids. The fatty acid profile comprised major amounts of anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0. All these data supported the affiliation of strain 02-Je-010T to the genus Citricoccus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 02-Je-010T from the two recognized Citricoccus species. For these reasons, strain 02-Je-010T represents a novel species, for which the name Citricoccus parietis sp. nov. is proposed, with the type strain 02-Je-010T (=CCUG 57388T=CCM 7609T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2513-2518 ◽  
Author(s):  
Peter Kämpfer ◽  
Holger C. Scholz ◽  
Birgit Huber ◽  
Enevold Falsen ◽  
Hans-Jürgen Busse

Three Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from clinical specimens between 1992 and 2000. On the basis of 16S rRNA gene sequence similarities, these strains (CCUG 30717T, CCUG 43892 and CCUG 38531T) were shown to belong to the Alphaproteobacteria, most closely related to Ochrobactrum grignonense (99.0 and 98.2 % similarity to the type strain). Chemotaxonomic data (major ubiquinone Q-10; major polyamines spermidine, sym-homospermidine and putrescine; major polar lipids phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine; major fatty acids C18 : 1 ω7c and C19 : 0 cyclo ω8c) supported the affiliation of the isolates to the genus Ochrobactrum. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from described Ochrobactrum species. Isolates CCUG 30717T and CCUG 43892 were closely related on the basis of DNA–DNA reassociation experiments and therefore represent one novel species, for which the name Ochrobactrum pseudogrignonense sp. nov. is proposed, with the type strain CCUG 30717T (=CIP 109451T). Isolate CCUG 38531T was different from these strains and also from other Ochrobactrum species. For this strain, the name Ochrobactrum haematophilum sp. nov. is proposed, with the type strain CCUG 38531T (=CIP 109452T).


2011 ◽  
Vol 61 (4) ◽  
pp. 870-876 ◽  
Author(s):  
S. Schauer ◽  
P. Kämpfer ◽  
S. Wellner ◽  
C. Spröer ◽  
U. Kutschera

A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1T, was isolated from a thallus of the liverwort Marchantia polymorpha L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with Methylobacterium adhaesivum AR27T, Methylobacterium fujisawaense DSM 5686T, Methylobacterium radiotolerans JCM 2831T and Methylobacterium jeotgali S2R03-9T, with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA–DNA relatedness between strain JT1T and these and the type strains of other closely related species were lower than 70 %. Cells of JT1T stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm−2). Major fatty acids were C18 : 1ω7c and C16 : 0. Based on the morphological, physiological and biochemical data presented, strain JT1T is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium marchantiae sp. nov. is proposed. The type strain is JT1T ( = DSM 21328T  = CCUG 56108T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1667-1671 ◽  
Author(s):  
S. Mayilraj ◽  
K. Suresh ◽  
R. M. Kroppenstedt ◽  
H. S. Saini

A coral-red-pigmented actinobacterium, strain K30-10T, was isolated from a soil sample from a cold desert of the Indian Himalayas. Chemical and phenotypic properties of strain K30-10T were consistent with its classification in the genus Dietzia. It showed 97.9 % 16S rRNA gene sequence similarity to Dietzia maris MTCC 7011T; similarities to the type strains of three other species of the genus, Dietzia natronolimnaea, Dietzia psychralcaliphila and Dietzia cinnamea, were 94.4–96.0 %. The DNA–DNA relatedness between K30-10T and the closely related strain D. maris MTCC 7011T was 59.2 %. The DNA G+C content of strain K30-10T was 67.0 mol%. Based on physiological and biochemical tests and genotypic differences between strain K30-10T and its closest phylogenetic relatives, it is proposed that this strain represents a novel species, Dietzia kunjamensis sp. nov.; the type strain is K30-10T (=MTCC 7007T=DSM 44907T=JCM 13325T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2689-2692 ◽  
Author(s):  
Seung-Hee Yoo ◽  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Soon-Wo Kwon ◽  
...  

A Gram-negative, obligately aerobic, rod-shaped bacterium was isolated from greenhouse soil used to cultivate lettuce. The strain, GH2-10T, was characterized on the basis of phenotypic and genotypic data. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Devosia, with highest sequence similarity (98.5 %) to Devosia riboflavina IFO 13584T. Sequence similarities with other strains tested were below 97.0 %. Strain GH2-10T had Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 59.5 mol%. The results of DNA–DNA hybridization experiments (47 % relatedness between D. riboflavina DSM 7230T and strain GH2-10T) and physiological and biochemical tests suggested that strain GH2-10T represents a novel species of the genus Devosia, for which the name Devosia soli sp. nov. is proposed. The type strain is GH2-10T (=KACC 11509T=DSM 17780T).


2007 ◽  
Vol 57 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633T) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633T was shown to belong to the family Propionibacteriaceae. The closest phylogenetic relative was Microlunatus phosphovorus DSM 19555T, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of M. phosphovorus, but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633T from this species. Therefore, strain Gsoil 633T represents a novel species, for which the name Microlunatus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 633T (=KCTC 13940T=DSM 17942T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1033-1038 ◽  
Author(s):  
Ismet Ara ◽  
Baljinova Tsetseg ◽  
Damdinsuren Daram ◽  
Manabu Suto ◽  
Katsuhiko Ando

A Gram-positive, aerobic, non-motile actinomycete, strain MN08-A0203T, that formed pale yellow to orange-brown colonies and non-fragmented branched substrate mycelium is described. The strain, which produced very scanty aerial mycelium-like structures and scanty formation of spherical bodies on the aerial mycelium on Bennett’s agar medium, was studied in detail to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity studies, strain MN08-A0203T grouped with the genus Actinophytocola, being most closely related to the type strain of Actinophytocola oryzae (97.8 %). Chemotaxonomic data [menaquinone MK-9(H4); iso-C16 : 0 (27 %), iso-C15 : 0 (18 %), C16 : 1 H (8 %), C16 : 0 9-methyl (8 %) as major fatty acids; glucose, galactose, ribose, arabinose, mannose, rhamnose and xylose (trace) as whole cell sugars; diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and ninhydrin-positive phosphoglycolipids as polar phospholipids] supported allocation of the strain to the genus Actinophytocola. Furthermore, the results of DNA–DNA hybridization of strain MN08-A0203T with the type strain of Actinophytocola oryzae revealed that the two strains were genetically distinct from each other. Moreover, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain MN08-A0203T from closely related species. Thus, MN08-A0203T represents a novel species of the genus Actinophytocola, for which the name Actinophytocola burenkhanensis sp. nov. is proposed, with MN08-A0203T ( = NBRC 105883T  = VTCC D9-23T) as the type strain.


2011 ◽  
Vol 61 (5) ◽  
pp. 1211-1217 ◽  
Author(s):  
Rodolfo Javier Menes ◽  
Claudia Elizabeth Viera ◽  
María Eugenia Farías ◽  
Manfredo J. Seufferheld

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (SV325T) was isolated from the sediment of a hypersaline lake located 4600 m above sea level (Laguna Vilama, Argentina). Strain SV325T formed cream to pink colonies, was motile and moderately halophilic, and tolerated NaCl concentrations of 1–25 % (w/v) with an optimum of 5–10 % (w/v). Growth occurred at 5–40 °C (optimum around 30 °C) and at pH 5.0–10.0 (optimum 7.0–8.0). The bacterium did not produce exopolysaccharides and stained positively for intracellular polyphosphate granules but not for poly-β-hydroxyalkanoates. It produced catalase and oxidase, reduced nitrate to nitrite, hydrolysed gelatin, did not produce acids from sugars and utilized a limited range of substrates as carbon and energy sources: acetate, caproate, fumarate, dl-β-hydroxybutyrate, malate, maleate, malonate and succinate. The predominant ubiquinones were Q-9 (92.5 %) and Q-8 (7.5 %), the major fatty acids were C19 : 0 cyclo ω8c, C16 : 0, C17 : 0 cyclo and C16 : 1ω7c/iso-C15:0 2-OH, and the DNA G+C content was 55.0 mol%. Phylogenetic analyses based on the 16S rRNA gene indicated that strain SV325T belongs to the genus Halomonas in the class Gammaproteobacteria. Physiological and biochemical tests allowed phenotypic differentiation of strain SV325T from closely related species with validly published names. We therefore propose a novel species, Halomonas vilamensis sp. nov., with type strain SV325T ( = DSM 21020T  = LMG 24332T).


Sign in / Sign up

Export Citation Format

Share Document