Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent

2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2920-2926 ◽  
Author(s):  
Aurore Gorlas ◽  
Karine Alain ◽  
Nadège Bienvenu ◽  
Claire Geslin

A novel hyperthermophilic, anaerobic archaeon, strain Bio-pl-0405IT2T, was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at 2700 m depth in the ‘Sarah Spring’ area (7° 25′ 24″ S 107° 47′ 66″ W). Cells were irregular, motile cocci (0.8–1.5 µm in diameter) and divided by constriction. Growth was observed at temperatures between 60 °C and 95 °C with an optimum at 80 °C. The pH range for growth was between pH 4.0 and pH 8.0 with an optimum around pH 7.0. Strain Bio-pl-0405IT2T grew at salt concentrations of 1–5 % (w/v) NaCl with an optimum at 2 %. The novel isolate grew by fermentation or sulphur respiration on a variety of organic compounds. It was a chemoorganoheterotrophic archaeon growing preferentially with yeast extract, peptone and tryptone as carbon and energy sources and sulphur and organic compounds as electron acceptors; it also grew on maltose and starch. Sulphur or l-cystine were required for growth and were reduced to hydrogen sulfide. The strain was resistant to rifampicin, chloramphenicol, vancomycin and kanamycin (all at 100 µg ml−1) but was sensitive to tetracycline. The G+C content of its genomic DNA was 53.6 mol%. Phylogenetic analysis of the almost complete 16S rRNA gene sequence (1450 bp) of strain Bio-pl-0405IT2T showed that the novel isolate belonged to the genus Thermococcus . DNA–DNA hybridization values with the two closest relatives Thermococcus hydrothermalis AL662T and Thermococcus celer JCM 8558T were below the threshold value of 70 %. On the basis of the physiological and genotypic distinctness, we propose a novel species, Thermococcus prieurii sp. nov. The type strain is Bio-pl-0405IT2T ( = CSUR P577T = JCM 16307T).

2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2962-2968 ◽  
Author(s):  
Shih-Yao Lin ◽  
Yi-Han Hsu ◽  
You-Cheng Liu ◽  
Mei-Hua Hung ◽  
Asif Hameed ◽  
...  

An aerobic, Gram-stain-negative, rod-shaped bacterium, designated strain CC-LY845T, was isolated from the surface of rice straw in Taiwan. Cells were non-motile, and no flagellum was detected. Comparison of 16S rRNA gene sequences indicated that the strain was phylogenetically related to species of the genus Rhizobium , with closest similarity to Rhizobium pseudoryzae KCTC 23294T (97.6 %), R. rhizoryzae KCTC 23652T (97.0 %) and R. oryzae LMG 24253T (96.7 %); other species showed lower levels of similarity (<96.6 %). The DNA–DNA relatedness of strain CC-LY845T and R. pseudoryzae KCTC 23294T was 34.8±3.1 % (reciprocal value 39.2±2.2 %). Phylogenetic analysis based on the housekeeping atpD and recA genes showed that the novel strain could be distinguished from R. pseudoryzae KCTC 23294T (92.7 and 91.5 %, respectively) and other species of the genus Rhizobium . The temperature range for growth was 25–42 °C, the pH range was 5.0–9.0 and NaCl concentrations up to 4.0 % (w/v) were tolerated. Strain CC-LY845T did not form nodules on four different legumes, and the nodD and nifH genes were not detected by PCR. The major fatty acids were C16 : 0 and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c). The polyamine pattern of strain CC-LY845T showed spermidine and putrescine as major polyamines. The predominant quinone system was ubiquinone 10 (Q-10). The DNA G+C content was 68.3±2.4 mol%. Base on its phylogenetic, phenotypic and chemotaxonomic features, strain CC-LY845T is proposed to represent a novel species within the genus Rhizobium , for which the name Rhizobium straminoryzae sp. nov. is proposed. The type strain is strain CC-LY845T ( = BCRC 80698T = JCM 19536T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3823-3828 ◽  
Author(s):  
Chokchai Kittiwongwattana ◽  
Chitti Thawai

A Gram-stain-negative, rod-shaped bacterium was isolated and designated strain L6-8T during a study of endophytic bacterial communities in lesser duckweed (Lemna aequinoctialis). Cells of strain L6-8T were motile with peritrichous flagella. The analysis of the nearly complete 16S rRNA gene sequence indicated that strain L6-8T was phylogenetically related to species of the genus Rhizobium . Its closest relatives were Rhizobium borbori DN316T (97.6 %), Rhizobium oryzae Alt 505T (97.3 %) and Rhizobium pseudoryzae J3-A127T (97.0 %). The sequence similarity analysis of housekeeping genes recA, glnII, atpD and gyrB showed low levels of sequence similarity (<91.5 %) between strain L6-8T and other species of the genus Rhizobium with validly published names. The pH range for growth was 4.0–9.0 (optimum 6.0–7.0), and the temperature range for growth was 20–45 °C (optimum 30 °C). Strain L6-8T tolerated NaCl up to 2 % (w/v) (optimum 1 % NaCl). The predominant components of cellular fatty acids were C19 : 0 cyclo ω8c (31.32 %), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 25.39 %) and C16 : 0 (12.03 %). The DNA G+C content of strain L6-8T was 60.4 mol% (T m). nodC and nifH were not amplified in strain L6-8T. DNA–DNA relatedness between strain L6-8T and R. borbori DN316T, R. oryzae Alt505T and R. pseudoryzae J3-A127T was between 11.2 and 18.3 %. Based on the sequence similarity analyses, phenotypic, biochemical and physiological characteristics and DNA–DNA hybridization, strain L6-8T could be readily distinguished from its closest relatives and represents a novel species of the genus Rhizobium , for which the name Rhizobium paknamense sp. nov. is proposed. The type strain is L6-8T ( = NBRC 109338T = BCC 55142T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1545-1549 ◽  
Author(s):  
Yan Bing Lin ◽  
Xin Ye Wang ◽  
Ting Ting Wang ◽  
Shao Shan An ◽  
Peng Shi ◽  
...  

A novel actinobacterium, designated strain F22T, was isolated from grassland soil collected from the Ziwuling area on the Loess Plateau, China. The novel strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces . Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F22T belonged to the genus Streptomyces , being most closely related to Streptomyces resistomycificus NBRC 12814T (98.28 % sequence similarity), Streptomyces ciscaucasicus NBRC 12872T (98.14 %), Streptomyces chartreusis NBRC 12753T (98.14 %) and Streptomyces canus NRRL B-1989T (98.14 %). In DNA–DNA hybridizations and comparisons of morphological and phenotypic data, strain F22T could be distinguished from all of its closest phylogenetic relatives. Strain F22T exhibited antibacterial and antifungal activity, especially against Staphylococcus aureus , Bacillus subtilis and Cylindrocarpon destructans. Based on the DNA–DNA hybridization data and morphological, phenotypic and phylogenetic evidence, strain F22T represents a novel species of the genus Streptomyces , for which the name Streptomyces ziwulingensis sp. nov. is proposed. The type strain is F22T ( = CCNWFX 0001T = JCM 18081T = ACCC41875T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1365-1372 ◽  
Author(s):  
Lopamudra Ray ◽  
Samir Ranjan Mishra ◽  
Ananta Narayan Panda ◽  
Gurdeep Rastogi ◽  
Ajit Kumar Pattanaik ◽  
...  

The taxonomic position of a novel actinomycete, strain RC 1831T, isolated from the sediment of a fish dumping yard at Barkul village near Chilika Lake, Odisha, India, was determined by a polyphasic approach. Based on morphological and chemotaxonomic characteristics the isolate was determined to belong to the genus Streptomyces . The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1428 nt) with representative strains showed that the strain consistently falls into a distinct phyletic line together with Streptomyces glaucosporus DSM 41689T (98.22 % similarity) and a subclade consisting of Streptomyces atacamensis DSM 42065T (98.40 %), Streptomyces radiopugnans R97 DSM 41901T (98.27 %), Streptomyces fenghuangensis GIMN4.003T (98.33 %), Streptomyces nanhaiensis DSM 41926T (98.13 %), Streptomyces megasporus NBRC 14749T (97.37 %) and Streptomyces macrosporus NBRC 14748T (98.22 %). However, the levels of DNA–DNA relatedness between strain RC 1831T and phylogenetically related strains Streptomyces atacamensis DSM 42065T (28.75±3.25 %) and Streptomyces glaucosporus DSM 41689T (15±2.40 %) were significantly lower than the 70 % threshold value for delineation of genomic species. Furthermore, the isolate could be distinguished phenotypically on the basis of physiological, morphological and biochemical differences from its closest phylogenetic neighbours and other related reference strains. Strain RC 1831T is therefore considered to represent a novel species of the genus Streptomyces , for which the name Streptomyces barkulensis sp. nov. is proposed. The type strain is RC 1831T ( = JCM 18754T = DSM 42082T).


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


Author(s):  
Soon Dong Lee ◽  
In Seop Kim

Two novel actinobacterial strains, designated C9-5T and C3-43, were isolated from soil samples of a cave in Jeju Island, Republic of Korea, and subjected to taxonomic study by a polyphasic approach. The organisms exhibited a typical rod–coccus developmental cycle during growth and grew at 10–30 °C, pH 5–9 and 0–3 % (w/v) NaCl. In 92 single-copy core gene sequence analysis, strain C9-5T was loosely associated with Rhodococcus tukisamuensis , albeit sharing low 16S rRNA gene sequence similarity (97.4 %). A combination of morphological and chemotaxonomic characteristics supported assignment with the genus Rhodococcus . With respect to 16S rRNA gene sequence similarity, the novel isolates showed the highest identity to the type strain of Rhodococcus subtropicus (98.7 % sequence similarity), followed by Rhodococcus olei (98.5 %) and Rhodococcus pedocola (98.4 %).The average nucleotide identity and digital DNA–DNA hybridization values between strain C9-5T and members of the genus Rhodococcus were ≤81.5 and ≤37.1 %, respectively. A set of physiological and chemotaxonomic properties together with overall genomic relatedness differentiated the novel isolates from members of the genus Rhodococcus , for which the name Rhodococcus spelaei sp. nov. is proposed. The type strain is C9-5T (=KACC 19822T=DSM 107558T). Based on genome analysis performed here, it is also proposed that Rhodococcus biphenylivorans Su et al. 2015 is a later heterotypic synonym of Rhodococcus pyridinivorans Yoon et al. 2000, Rhodococcus qingshengii Xu et al. 2007 and Rhodococcus baikonurensis Li et al. 2004 are later heterotypic synonyms of Rhodococcus erythropolis (Gray and Thornton 1928) Goodfellow and Alderson 1979 (Approved Lists 1980), and Rhodococcus percolatus Briglia et al. 1996 and Rhodococcus imtechensis Ghosh et al. 2006 are later heterotypic synonyms of Rhodococcus opacus Klatte et al. 1995.


Author(s):  
Veeraya Weerawongwiwat ◽  
Jong-Hwa Kim ◽  
Jung-Hoon Yoon ◽  
Min Kuk Suh ◽  
Han Sol Kim ◽  
...  

A novel bacterium, designated strain CAU 1637T, was isolated from a tidal mudflat. Cells of strain CAU 1637T were Gram-stain-negative, aerobic, motile with single flagellum and rod-shaped. The optimum conditions for growth were observed at 30 °C, pH 6.0 and in the presence of 2 % (w/v) NaCl. The respiratory quinone was ubiquinone-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1637T was closely related to the genus Roseibium , with the highest similarity to Roseibium aestuarii NRBC 112946T (97.4 %), followed by Roseibium hamelinense NRBC 16783T (96.8 %), Roseibium aquae JCM 19310T (96.4 %), Roseibium sediminis KCTC 52373T (95.8 %) and Roseibium denhamense JCM 10543T (95.3 %). The predominant cellular fatty acids were C18 : 1  ω7c 11-methyl and summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c). The major polar lipids consisted of diphosphatidylglycerol and phosphatidylglycerol. The average nucleotide identity values between the novel isolate and related strains ranged from 71.0 to 76.4 %, and the DNA−DNA hybridization values ranged from 19.3 to 20.3 %. The G+C content was 58.4 mol% and the whole-genome size was 4.6 Mb, which included 17 contigs and 3931 protein-coding genes. Based on the taxonomic data, strain CAU 1637T represents a novel species of the genus Roseibium , for which the name Roseibium limicola sp. nov. is proposed. The type strain is CAU 1637T (=KCTC 82429T=MCCC 1K06080T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 171-176 ◽  
Author(s):  
Qingqing Feng ◽  
Yuan Gao ◽  
Yuichi Nogi ◽  
Xu Tan ◽  
Lu Han ◽  
...  

Two novel strains, T9T and T10, were isolated from water samples collected from Chishui River flowing through Maotai town, Guizhou, south-west China. The isolates were yellow-pigmented, Gram-reaction-negative, rod-shaped, non-motile and aerobic. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Flavobacterium , and showed highest similarities to Flavobacterium hibernum DSM 12611T (97.0 %), followed by Flavobacterium granuli Kw05T (96.7 %) and Flavobacterium pectinovorum DSM 6368T (96.7 %). The novel strains were able to grow at 20–37 °C (optimum 25 °C), pH 7.0–10.0 (optimum pH 7.0–8.0) and with 0–0.5 % (w/v) NaCl (optimum 0.5 %). The predominant fatty acids were iso-C15 : 0, C16 : 1ω7c, anteiso-C15 : 0, C15 : 0, iso-C15 : 0 3-OH and iso-C15 : 1ω10c, and menaquinone-6 (MK-6) was the main respiratory quinone. The major polar lipids were phosphatidylethanolamine, one unknown glycolipid, two unknown aminolipids and two unidentified lipids. The DNA G+C contents of strains T9T and T10 were 37.7 and 36.4 mol%, respectively. According to the phenotypic and genetic data, strains T9T and T10 represent a novel species in the genus Flavobacterium , for which the name Flavobacterium maotaiense sp. nov. is proposed. The type strain is T9T ( = CGMCC 1.12712T = JCM 19927T).


Sign in / Sign up

Export Citation Format

Share Document